Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover New DNA Binding Activity of E. coli Protein

01.08.2008
Northeastern University scientists have discovered a new and unique DNA binding property of a protein in E. coli. Penny J. Beuning, Assistant Professor in the Department of Chemistry and Chemical Biology, spent the last two years researching double and single-stranded DNA binding of E. coli DNA polymerase III alpha protein and notes that her findings have potential for developing a new antibacterial target.

Beuning's results have recently been published in ACS Chemical Biology in an article titled "Distinct Double- and Single-Stranded DNA Binding of E. coli Replicative DNA Polymerase III Alpha Subunit".

This work represents the collaborative effort of the Northeastern laboratories of Beuning and Mark C. Williams, Associate Professor of Physics, and involved researchers Micah J. McCauley, Leila Shokri, and Jana Sefcikova from both laboratories. Additionally, Èeslovas Venclovas, of the Institute of Biotechnology in Lithuania, provided computational modeling expertise to the project.

The project took advantage of the single-molecule expertise in the Williams laboratory and used a series of optical tweezers experiments to find that the DNA polymerase subunit of the 10-subunit bacterial replicative DNA enzyme has affinity for both double and single-stranded DNA in distinct subdomains of the protein.

... more about:
»Beuning »Coli »DNA »single-stranded

DNA polymerase III is responsible for copying the entire genome of E. coli every time a cell divides. The alpha subunit is the enzyme that actually copies the DNA, and that activity is well-known. However, there are additional parts of the protein that were not characterized and that the researches suspected had DNA binding activity. The researchers first confirmed that the protein binds both double- and single-stranded DNA. Using protein engineering methods to isolate protein domains, they were able to localize the two different DNA binding activities to two different domains of the protein.

"The single-stranded DNA binding component appears to be passive, because the protein does not assist in melting but instead binds to single-stranded regions which are already separated by force," said Beuning. "Detecting this kind of binding would be difficult or impossible using traditional methods of assaying DNA binding activity."

The researchers' results demonstrated that single-stranded DNA binding is localized to an OB-fold domain while a tandem, helix-hairpin-helix motif contributes significantly to double-stranded DNA binding. Single-stranded DNA binding by the subunit occurs only after single-stranded DNA has been fully melted by force. This unusual behavior, noted Beuning, may be functionally important as single-stranded DNA binding will likely occur only after other replication processes create single-stranded DNA.

“It is crucial to understand how these kinds of massive biological machines function in the cellular environment in order to fully exploit their potential as drug targets,” added Beuning.

About Northeastern

Founded in 1898, Northeastern University is a private research university located in the heart of Boston. Northeastern is a leader in interdisciplinary research, urban engagement, and the integration of classroom learning with real-world experience. The university's distinctive cooperative education program, where students alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, is one of the largest and most innovative in the world. The University offers a comprehensive range of undergraduate and graduate programs leading to degrees through the doctorate in six undergraduate colleges, eight graduate schools, and two part-time divisions.

Samantha Fodrowski | Newswise Science News
Further information:
http://www.northeastern.edu

Further reports about: Beuning Coli DNA single-stranded

More articles from Life Sciences:

nachricht RUDN chemist tested a new nanocatalyst for obtaining hydrogen
18.10.2018 | RUDN University

nachricht Dandelion seeds reveal newly discovered form of natural flight
18.10.2018 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

RUDN chemist tested a new nanocatalyst for obtaining hydrogen

18.10.2018 | Life Sciences

Massive organism is crashing on our watch

18.10.2018 | Earth Sciences

Electrical enhancement: Engineers speed up electrons in semiconductors

18.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>