Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover compound with potent effects on biological clock

16.12.2010
Using an automated screening technique developed by pharmaceutical companies to find new drugs, a team of researchers from UC San Diego and three other research institutions has discovered a molecule with the most potent effects ever seen on the biological clock.

Dubbed by the scientists "longdaysin," for its ability to dramatically slow down the biological clock, the new compound and the application of their screening method to the discovery of other clock-shifting chemicals could pave the way for a host of new drugs to treat severe sleep disorders or quickly reset the biological clocks of jet-lagged travelers who regularly travel across multiple time zones.

"Theoretically, longdaysin or a compound like it could be used to correct sleep disorders such as the genetic disorder familial advanced sleep syndrome, which is characterized by a clock that's running too fast," said Steve Kay, dean of UCSD's Division of Biological Sciences, who headed the research team, which published its findings in the December 14 issue of the journal PLoS Biology. "A compound that makes the clock slow down or speed up can also be used to phase-shift the clock—in other words, to bump or reset the hands of the clock. This would help your body catch up when it is jet lagged or reset it to a normal day-night cycle when it has been thrown out of phase by shift work."

The researchers demonstrated the dramatic effects of longdaysin by lengthening the biological clocks of larval zebra fish by more than 10 hours.

"Longdaysin is the champion by far in how much it can move the clock," said Kay, whose laboratory at UCSD had found compounds in previous studies that could shift the biological clock by as much as several hours at most. "We were really surprised to find out how much you can slow down the biological clock with this compound and still have a clock that is running."

Biologists in Kay's laboratory and the nearby Genomics Institute of the Novartis Research Foundation, who were led by Tsuyoshi Hirota, the first author of the paper, discovered longdaysin by screening thousands of compounds with a chemical robot that tested the reaction of each compound with a line of human bone cancer cells that the researchers' genetically modified so that they could visually see changes in the cells' circadian rhythms. This was done by attaching in the cells a clock gene to a luciferase gene used by fireflies to glow at night, so that the cells glowed when the biological clock was activated. A chemical robot screened more than 120,000 potential compounds from a chemical library into individual micro-titer wells, a system used by drug companies called high-throughput screening, and automatically singled out those molecules found to have the biggest effects on the biological clock.

Once Kay's group had isolated longdaysin, it turned to biological chemists in Peter Schultz's laboratory at The Scripps Research Institute to characterize the molecule and figure out the mechanisms of how it lengthened the biological clock. That analysis showed that three separate protein kinases on the compound were responsible for the dramatic effect of longdaysin, one of which, CK1alpha, had previously been ignored by chronobiology researchers.

"Because this compound doesn't just hit one target, but multiple targets, it showed us that if you want to shift the biological clock in a major way you have to hit multiple kinases," said Kay.

The researchers then showed that longdaysin had the same effect of lengthening the biological clock in mouse tissue samples and zebra fish larvae that carried luciferase genes attached to their clock genes.

"We were really encouraged to find that when we added longdaysin to these living zebra fish, we lengthened the biological clock and didn't see any obvious deleterious effects," said Kay. "They grow normally while they are exposed to this compound. That showed us that our high-throughput assay works and accurately predicts how the compound works on the biological clock of a living fish. The next thing to do is to try this in a mammalian system."

Kay's research team plans to test longdaysin on mice in the near future, but its goal isn't to develop longdaysin into a drug.

"Longdaysin is not as potent as we would like," he adds. "This will be a tool for research."

Other co-authors of the paper besides Hirota and Schultz were Warren Lewis, Eric Zhang, Ghislain Breton and David Traver of UCSD; Jae Wook Lee of TSRI; Xianzhong Liu, Michael Garcia Eric Peters of the Genomics Institute of the Novartis Research Foundation; and Pierre Etchegaray of the University of Massachusetts Medical School.

The study was funded by grants from the National Institutes of Health.

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>