Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Why Common Tree Is Toxic to Snowshoe Hares

08.02.2012
Boise State University biologists have uncovered why the chemical defenses in birch, a common type of tree found in North America, are toxic to snowshoe hares.

The snowshoe hare, also commonly called the snowshoe rabbit, is found throughout North America and plays an integral part in the food chain. Understanding the mechanism by which chemical defenses in trees and plants deter snowshoe hares and other herbivores can help explain diet selection and habitat use.

The researchers found that birch inhibits a certain enzyme – succinate dehydrogenase (SDH) – and therefore interferes with cellular energy production. Although it is well documented that the chemicals in birch are harmful to snowshoe hares and other herbivores, the mechanism for toxicity was not known until now.

The study appears online in the Journal of Chemical Ecology and is the first to specifically show how birch’s toxicity affects snowshoe hares.

“If we know diet selection and habitat use, it could lead to better management and conservation of both wildlife and the plants they eat,” said study coauthor Jennifer Forbey, assistant professor of biological sciences. “This work represents a novel discovery and also helps explain the evolution and distribution of chemicals in trees and plants that was made possible by integrating expertise from ecology, pharmacology and chemistry. These chemicals can be toxic to both wildlife and domestic animals and can therefore influence the health of these animals.”

To conduct the study, researchers measured the inhibition of SDH isolated from snowshoe hares using in vitro enzyme kinetics studies. They then used computer generated structures of the enzyme and toxin to see if they have the right “shape” to bind together. They confirmed binding of the birch toxin to SDH, which interferes with cellular energy production, showing how birch affects the snowshoe hare.

Also collaborating on the project are Dong Xu, assistant professor of chemistry; Xinzhu Pu, research assistant professor of biology; Knut Kielland, an associate professor at the University of Alaska, Fairbanks; and John Bryant, professor emeritus at the University of Alaska, Fairbanks.

Learn More About Research at Boise State University
An emerging metropolitan research university of distinction, Boise State University has launched a new website – beyondtheblue.boisestate.edu – to showcase the research expertise and innovative spirit at the university. Known for its unique blue turf and nationally ranked football program, Boise State is demonstrating its creativity beyond the blue in an ongoing series of faculty podcasts where faculty experts provide insight into today’s issues, challenges and topics of interest.

Matt Pene | Newswise Science News
Further information:
http://www.boisestate.edu

More articles from Life Sciences:

nachricht Study reveals how bacteria build essential carbon-fixing machinery
09.07.2020 | University of Liverpool

nachricht Stress testing 'coral in a box'
09.07.2020 | University of Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Porous graphene ribbons doped with nitrogen for electronics and quantum computing

09.07.2020 | Physics and Astronomy

Record efficiency for printed solar cells

09.07.2020 | Power and Electrical Engineering

Rock 'n' control

09.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>