Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Why Common Tree Is Toxic to Snowshoe Hares

08.02.2012
Boise State University biologists have uncovered why the chemical defenses in birch, a common type of tree found in North America, are toxic to snowshoe hares.

The snowshoe hare, also commonly called the snowshoe rabbit, is found throughout North America and plays an integral part in the food chain. Understanding the mechanism by which chemical defenses in trees and plants deter snowshoe hares and other herbivores can help explain diet selection and habitat use.

The researchers found that birch inhibits a certain enzyme – succinate dehydrogenase (SDH) – and therefore interferes with cellular energy production. Although it is well documented that the chemicals in birch are harmful to snowshoe hares and other herbivores, the mechanism for toxicity was not known until now.

The study appears online in the Journal of Chemical Ecology and is the first to specifically show how birch’s toxicity affects snowshoe hares.

“If we know diet selection and habitat use, it could lead to better management and conservation of both wildlife and the plants they eat,” said study coauthor Jennifer Forbey, assistant professor of biological sciences. “This work represents a novel discovery and also helps explain the evolution and distribution of chemicals in trees and plants that was made possible by integrating expertise from ecology, pharmacology and chemistry. These chemicals can be toxic to both wildlife and domestic animals and can therefore influence the health of these animals.”

To conduct the study, researchers measured the inhibition of SDH isolated from snowshoe hares using in vitro enzyme kinetics studies. They then used computer generated structures of the enzyme and toxin to see if they have the right “shape” to bind together. They confirmed binding of the birch toxin to SDH, which interferes with cellular energy production, showing how birch affects the snowshoe hare.

Also collaborating on the project are Dong Xu, assistant professor of chemistry; Xinzhu Pu, research assistant professor of biology; Knut Kielland, an associate professor at the University of Alaska, Fairbanks; and John Bryant, professor emeritus at the University of Alaska, Fairbanks.

Learn More About Research at Boise State University
An emerging metropolitan research university of distinction, Boise State University has launched a new website – beyondtheblue.boisestate.edu – to showcase the research expertise and innovative spirit at the university. Known for its unique blue turf and nationally ranked football program, Boise State is demonstrating its creativity beyond the blue in an ongoing series of faculty podcasts where faculty experts provide insight into today’s issues, challenges and topics of interest.

Matt Pene | Newswise Science News
Further information:
http://www.boisestate.edu

More articles from Life Sciences:

nachricht Observing changes in the chirality of molecules in real time
15.11.2019 | ETH Zurich

nachricht Pinpointing Pollutants from Space
14.11.2019 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

Observing changes in the chirality of molecules in real time

15.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>