Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Why Common Tree Is Toxic to Snowshoe Hares

08.02.2012
Boise State University biologists have uncovered why the chemical defenses in birch, a common type of tree found in North America, are toxic to snowshoe hares.

The snowshoe hare, also commonly called the snowshoe rabbit, is found throughout North America and plays an integral part in the food chain. Understanding the mechanism by which chemical defenses in trees and plants deter snowshoe hares and other herbivores can help explain diet selection and habitat use.

The researchers found that birch inhibits a certain enzyme – succinate dehydrogenase (SDH) – and therefore interferes with cellular energy production. Although it is well documented that the chemicals in birch are harmful to snowshoe hares and other herbivores, the mechanism for toxicity was not known until now.

The study appears online in the Journal of Chemical Ecology and is the first to specifically show how birch’s toxicity affects snowshoe hares.

“If we know diet selection and habitat use, it could lead to better management and conservation of both wildlife and the plants they eat,” said study coauthor Jennifer Forbey, assistant professor of biological sciences. “This work represents a novel discovery and also helps explain the evolution and distribution of chemicals in trees and plants that was made possible by integrating expertise from ecology, pharmacology and chemistry. These chemicals can be toxic to both wildlife and domestic animals and can therefore influence the health of these animals.”

To conduct the study, researchers measured the inhibition of SDH isolated from snowshoe hares using in vitro enzyme kinetics studies. They then used computer generated structures of the enzyme and toxin to see if they have the right “shape” to bind together. They confirmed binding of the birch toxin to SDH, which interferes with cellular energy production, showing how birch affects the snowshoe hare.

Also collaborating on the project are Dong Xu, assistant professor of chemistry; Xinzhu Pu, research assistant professor of biology; Knut Kielland, an associate professor at the University of Alaska, Fairbanks; and John Bryant, professor emeritus at the University of Alaska, Fairbanks.

Learn More About Research at Boise State University
An emerging metropolitan research university of distinction, Boise State University has launched a new website – beyondtheblue.boisestate.edu – to showcase the research expertise and innovative spirit at the university. Known for its unique blue turf and nationally ranked football program, Boise State is demonstrating its creativity beyond the blue in an ongoing series of faculty podcasts where faculty experts provide insight into today’s issues, challenges and topics of interest.

Matt Pene | Newswise Science News
Further information:
http://www.boisestate.edu

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>