Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover cells that change their identity during normal development

04.06.2019

A new study by researchers at the University of Virginia and other institutions has discovered a type of pigment cell in zebrafish that can transform after development into another cell type.

David Parichy, the Pratt-Ivy Foundation Distinguished Professor of Morphogenesis in UVA's Department of Biology, said that researchers in his lab noticed that some black pigment cells on zebrafish became gray and then eventually white. When they looked closer, they found dramatic changes in gene expression and pigment chemistry.


The cells are located at the fin tips, which are flared during social interactions, like "raising a flag," researchers said.

Credit: UVA

Usage Restrictions: News media only.


University of Virginia researchers have discovered cells in zebrafish that are able to change into another cell type, in this case from those that produce the pigment melanin to cells that do not.

Credit: UVA

Usage Restrictions: For use by news media only.

"We realized that the cells have a secret history hiding in plain sight," he said. "Zebrafish have been studied closely for more than 30 years - we know a lot about them - but this is the first time this transformation has been noticed. It's a very surprising discovery."

The unique cell population sheds the pigment melanin, changing in color from black to white during the life cycle of an individual fish. These special cells are found at the edges of the fins, where they seem to act as a signal to other zebrafish.

The ability of a developed cell to differentiate directly into another type of cell is exceptionally rare. Normally such a change requires experimental intervention, returning the cell to a stem-cell state in a dish, before it can differentiate, or transform, as something else.

The new finding, published recently online in the journal Proceedings of the National Academy of Sciences, suggests that some developed cells might be more amenable to change than generally believed.

"For a long time, the idea in developmental biology has been that once a cell has completed its development, it stays that way," said Parichy, who led the study. "We are discovering that this is not always the case; that, in fact, there are some rare cell populations that are able to change into something new even after their initial development. The dogma says this isn't supposed to happen."

Stem cells develop into one type of cell or another, and then those differentiated cells normally stay that way - a skin cell stays a skin cell, muscle cells stay muscle, and so on. But the newly discovered cells, called melanocytes, which are similar to those of humans, contain melanin initially, then lose it and make a white pigment in its place. These cells block the molecular pathways that otherwise would allow them to make melanin and turn on new genes required for their new appearance.

This ability to change makes the cells a good study model for understanding both how cells differentiate, and how it may be possible to make cells differentiate into something new even while still in the animal.

The discovery, Parichy said, has possible implications for regenerative medicine, where researchers might want to use cells already present to make replacement tissues of various cell types. Such a capability could be useful in treating patients after stroke, spinal cord injury, heart attacks or other trauma.

"Knowing how cells can be made to change their differentiated state is essential to regenerative medicine, so having an example in which a species does this naturally is very valuable," he said.

Researchers already are using stem cells to create various cell types, from muscle to skin, but perhaps developed cells also could play a role. Parichy hopes that what he and other researchers learn from the highly unusual transformation of these pigment cells will provide greater understanding of the process and, perhaps, how to manipulate it by reprogramming cells.

"If we can understand how cells go from black to white, this has implications for helping us better understand cells more generally," he said.

The study also showed that zebrafish were able to recognize whether or not these transforming cells were present, and this affected their social interactions. The cells are located at the fin tips, which are flared during social interactions, like "raising a flag." As such, these black cells that turn to white may affect associations of fish in the wild, with consequences for access to food and mates, as well as avoidance of predators.

Remarkably the authors also found an additional population of white cells in zebrafish, made in a different way, and that different species of the fish had different complements of these populations. Parichy noted that the study "really shows how much you can learn by tackling questions at levels ranging from genes to cells to behavior to evolution."

Fariss Samarrai | EurekAlert!
Further information:
http://dx.doi.org/10.1073/pnas.1901021116

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>