Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover How Some Breast Cancers Alter Their Sensitivity to Estrogen

29.07.2011
Findings help explain tamoxifen resistance in some breast cancers

Using human breast cancer cells and the protein that causes fireflies to glow, a Johns Hopkins team has shed light on why some breast cancer cells become resistant to the anticancer effects of the drug tamoxifen. The key is a discovery of two genetic “dimmer switches” that apparently control how a breast cancer gene responds to the female hormone estrogen.

In a report published online July 7 by Human Molecular Genetics, the scientists show how a gene known as RET in breast cancer cells responds to estrogen by dialing up the manufacture of a signaling protein that instructs cells to divide and causes tumors to become aggressive through the escape from estrogen dependence.

Scientists have long known that breast cancers are either estrogen-receptor positive or estrogen-receptor negative. The positive subset, generally associated with better outcomes for patients, is sensitive to the drug tamoxifen, which blunts aggressive tumor growth through estrogen receptor inhibition, according to Zachary E. Stine, the research team’s lead author and a postdoctoral fellow working in the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine.

Used for decades to prevent and treat breast tumors that kill about 40,000 women a year, tamoxifen works on some types of breast cancers by interfering with the activity of estrogen. However, resistance to the drug frequently develops over time, and previous experiments by other laboratories have shown that RET plays some role in either altering resistance or maintaining it.

Thus, the Hopkins scientists focused on RET, searching for pieces of DNA in the vicinity of that gene that had the potential, when combined with estrogen, to act as switches controlling the amount of protein product RET manufactures.

After identifying 10 sites in the RET locus that bind with estrogen receptor alpha, the investigators cloned the DNA sequences in those areas, then attached to each a piece of genetic material responsible for producing luciferase, an enzyme that causes the luminescent glow of a firefly. This lab product was then put inside human breast cancer cells in a dish and exposed to estrogen. Two of the 10 sequences lit up much more brightly than the others, revealing increased activity by the RET gene in response to estrogen.

“Those two sequences clearly are genetic hubs for the dialing up and dialing down of RET activity in response to estrogen,” says Andrew McCallion, Ph.D., an associate professor in the McKusick-Nathans Institute of Genetic Medicine, and corresponding author on the study.

In a second experiment, the team used the cloned sequence and luciferase concoction, inserted it into a breast cancer gene, and this time added retinoic acid instead of estrogen. Retinoic acid is well known to slow cancer cell growth. The scientists showed that one of the two sequences previously shown to be estrogen responsive also responded to retinoic acid and increased RET activity.

The investigators also found that when they put estrogen and retinoic acid together in breast cancer cells in culture, the increased activity of RET was much greater compared to either estrogen or retinoic acid alone.

Because it appears that increased RET activity is linked to more aggressive and tamoxifen-resistant types of breast cancers, the discovery is potentially important for making decisions about tamoxifen use, McCallion says. Understanding the genetics of these proteins also has the potential to guide the search for new therapeutic targets in breast cancer. With the new information, he says, steps might be taken to “resensitize” tumors that become tamoxifin- insensitive by manipulating the regulators of RET and, therefore, its protein products.

Support for this research came from the National Institutes of Health.

Authors of the paper, in addition to Stine and McCallion, are David M. McGaughey, Seneca L. Bessling and Shengchao Li, all of Johns Hopkins.

On the Web:
McCallion lab: http://www.hopkinsmedicine.org/geneticmedicine/People/Faculty/mccallion.html

Human Molecular Genetics: http://hmg.oxfordjournals.org/

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Genome Duplication Drives Evolution of Species
25.09.2018 | Universität Zürich

nachricht Why it doesn’t get dark when you blink
25.09.2018 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Why it doesn’t get dark when you blink

25.09.2018 | Life Sciences

Genome Duplication Drives Evolution of Species

25.09.2018 | Life Sciences

Desert ants have an amazing odor memory

25.09.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>