Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Blood Proteins Associated with Early Development of Lung Cancer

14.09.2011
A research team led by Fred Hutchinson Cancer Research Center has discovered proteins in the blood that are associated with early lung cancer development in mice and humans. The advance brings the reality of a blood test for the early detection and diagnosis of lung cancer a step closer.

The findings, by a team led by Samir Hanash, M.D., Ph.D., head of the Hutchinson Center’s Molecular Diagnostics Program and member of its Public Health Sciences Division, are published online Sept. 12 ahead of the Sept. 13 print issue of Cancer Cell.

“A major feature of this study was that we were able to replicate findings from mouse models of lung cancer in blood samples from humans with lung cancer both at the time of diagnosis and, importantly, prior to the onset of symptoms and diagnosis,” Hanash said. “Our data showed that the protein markers that were tested showed similar concordance between lung cancer in the mouse and lung cancer in humans. This means that developing a blood test to detect lung cancer is increasingly within reach.”

The blood protein signatures discovered in the future may be used in a blood test to not only screen for lung cancer among high-risk individuals such as current and former smokers, but to aid in diagnosis, distinguishing between various subtypes of the disease, such as small-cell lung cancer and lung adenocarcinoma.

Hanash envisions that such a test could be used together with imaging technologies such as CT screening to monitor people at high risk of developing the disease.

“There is a substantial need for simple, non-invasive means to detect lung cancer. While imaging-based screening to detect lung cancer has shown promise, blood-based diagnostics provide a complementary means for detection, disease classification, and monitoring for cancer progression and regression,” the authors wrote.

For the study, the researchers conducted in-depth blood protein analysis of three mouse models of lung adenocarcinoma and a genetically engineered mouse model of small-cell lung cancer. To further refine the results, they compared these lung cancer protein profiles to those from other well-established mouse models of pancreatic, ovarian, colon, prostate and breast cancer, as well as two mouse models of inflammation without the presence of cancer. Several protein signatures emerged that were specific to lung cancer:
• In models of lung adenocarcinoma, the researchers uncovered a set of elevated proteins that are regulated by the NKX2.1 transcription factor, which has been linked to lung development and function. They also discovered a network of dysregulated proteins linked to epidermal growth factor receptor which, when mutated in lung tissue, is associated with cancer development. Levels of these proteins returned to near normal upon treatment with a tyrosine kinase inhibitor, an anti-cancer drug.

• In a model of small-cell lung cancer, the researchers found a distinct blood protein signature that was associated with neuroendocrine development.

To determine whether these protein signatures in mice were relevant to human lung cancer, the researchers analyzed blood samples from 28 smokers who had been newly diagnosed with operable lung cancer and blood samples from 26 other subjects that were obtained up to a year before lung cancer was diagnosed. For comparison purposes they also analyzed blood from a similar number of matched, cancer-free controls.

The researchers found striking similarities between the protein signatures in mice and human. For example, in mice with small-cell lung cancer, they found elevated levels of a neural protein called Robo1. They also found significantly increased levels of this protein in patients with small-cell lung cancer as compared to matched human controls.

“Additional validation studies are in progress to further determine the sensitivity and specificity of the marker panels,” Hanash said.

Collaborators on the study included researchers from Memorial Sloan-Kettering Cancer Center, the National Human Genome Research Institute, Yale University School of Medicine, Stanford University, the University of Texas Southwestern Medical Center, and Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Harvard Medical School.

Funding for the research came from the NCI Mouse Models of Human Cancer Program, the NCI Early Detection Research Network, the Canary Foundation, the Thomas G. Labrecque Foundation, the Uniting Against Lung Cancer Foundation, the Department of Defense Congressionally Directed Lung Cancer Research Program and the Parker B. Francis Fellowship Program of the Francis Family Foundation.

Note for media only: To obtain a copy of the embargoed Cancer Cell paper, “Lung Cancer Signatures in Plasma Based on Proteome Profiling of Mouse Tumor Models,” please contact Mary Beth O’Leary in the journal’s press office at moleary@cell.com or 617-397-2802. To arrange an interview with Hanash, please contact Kristen Woodward in media relations at the Hutchinson Center at kwoodwar@fhcrc.org or 206-667-5095.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit fhcrc.org.

Kristen Woodward | Newswise Science News
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>