Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop New Way to Screen for Brain Cancer Stem Cell Killers

12.10.2011
Researchers with UCLA’s Jonsson Comprehensive Cancer Center have developed and used a high-throughput molecular screening approach that identifies and characterizes chemical compounds that can target the stem cells that are responsible for creating deadly brain tumors.

Glioblastoma is one of the deadliest malignancies, typically killing patients within 12 to 18 months. These brain cancers consist of two kinds of cells, a larger, heterogeneous population of tumor cells and a smaller sub-population of stem cells, which are treatment-resistant.

The screening system was specifically designed to find drugs that can target that sub-population and prevent it from re-seeding the brain cancer, said study senior author Dr. Harley Kornblum, a Jonsson Cancer Center scientist and a professor of psychiatry and biobehavioral sciences.

“We’re pleased that we can present a different way to approach the discovery of potential new cancer drugs,” said Kornblum, who also is a researcher with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA. “And by finding these drugs, we may be able to reveal things about the biology of these cancer stem cells.”

The study appears in the Oct. 10 issue of Molecular Cancer Therapeutics, a peer-reviewed journal of the American Association of Cancer Research.

After testing more than 31,000 compounds from seven chemical libraries in an initial screen, the team came up with 694 that showed some activity against the brain cancer stem cells. After further narrowing the field down to 168 compounds, they decided to focus on four in future studies because they most successfully inhibited the brain cancer stem cells, Kornblum said.

What Kornblum and his team did in their approach was sort of a reverse of the usual screening processes. Typically, researchers doing high-throughput screening are seeking a drug to hit a specific target they know is on a cancer cell, perhaps a protein that is causing it to grow or a gene that keeps it from dying. In this case, Kornblum said, the team was basically shooting in the dark because the biology of these brain cancer stem cells is largely unknown.

“When brain cancer stem cells were first discovered, we all realized rapidly that we would need to find drugs that attack these cells specifically, because they’re resistant to our conventional therapies,” Kornblum said. “We needed a way to kill these stem cells.”

UCLA’s high-throughput screening technology is capable of screening as many as 100,000 compounds in a single day. Researchers generally develop cancer cells lines and then create an assay, a procedure in molecular biology to test or measure the activity of a drug or biochemical compound in an organic sample, in this case the cancer cells.

The cells are loaded into plates with 384 wells each and the drugs are added. The plates are about the size of the palm of an adult hand. The computerized, robotic screening system executes the process from start to finish, adding the compounds sitting in the tiny wells in the plates to the cancer cells, located in corresponding assay plates.

In this study, Kornblum and his team had a few clues to help them in narrowing down potential candidates that kill brain cancer stem cells. One method they used was based on a prior discovery by Jonsson Cancer Center researchers. The researchers had identified genes that correlate with how aggressive a brain tumor is, so Kornblum decided to try to find potential drug candidates that might reduce the expression of these genes. Another approach was to figure out which of the molecules killed brain cancer stem cells with a greater potency than they attacked other cells within glioblastoma.

To grow his cell lines, Kornblum used human tissue taken from UCLA patients diagnosed with glioblastoma. He knew that a certain method of culturing brain cancer cells resulted in a large number of brain cancer stem cells in the population. These cells were then screened with a molecular library of 31,624 compounds available through the cancer center’s Molecular Screening Shared Resource. These compounds encompass a wide range of structures and therefore have the possibility of influencing virtually all cellular functions.

“We decided on this type of approach because, although we have learned a great deal about brain cancer stem cells in the past several years, we still have not discovered enough of their biology to be sure that any single target will be the right one to hit,” Kornblum said.

Going forward, Kornblum and his team will further study the four identified “lead” compounds to see if they help reveal the biology of the brain cancer stem cells and potentially result in a new and more effective therapy for these deadly brain cancers.

“One of our goals was to determine whether some compounds selectively act on glioblastoma stem cells compared to the less tumorigenic cells from the same tumor,” the study states. “This selectivity may allow for the delineation of pathways and processes that are highly important to these cells. By making sure that a drug candidate has the potential to attack these stem cells, one might ensure the highest chance of therapeutic success.”

Funding for the study was provided by the Jonsson Comprehensive Cancer Center, the National Cancer Institute and the National Institute of Neurological Disorders and Stroke.

UCLA's Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2011, the Jonsson Cancer Center was named among the top 10 cancer centers nationwide by U.S. News & World Report, a ranking it has held for 11 of the last 12 years. For more information on the Jonsson Cancer Center, visit our website at http://www.cancer.ucla.edu.

Kim Irwin | Newswise Science News
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>