Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop optical tools to detect metabolic changes linked to disease

08.03.2018

Discovery suggests the possibility of non-invasive metabolic monitoring for use in research and development of improved therapeutics

Metabolic changes in cells can occur at the earliest stages of disease. In most cases, knowledge of those signals is limited, since we usually detect disease only after it has done significant damage. Now, a team led by engineers at Tufts University School of Engineering has opened a window into the cell by developing an optical tool that can read metabolism at subcellular resolution, without having to perturb cells with contrast agents, or destroy them to conduct assays.


Optical readouts of HL-1 cardiomyocytes in response to chemical uncoupling by CCCP. Redox ratio map for control (left), and CCCP exposed cardiomyocytes (right).

Credit: Irene Georgakoudi, Tufts University

As reported today in Science Advances, the researchers were able to use the method to identify specific metabolic signatures that could arise in diabetes, cancer, cardiovascular and neurodegenerative diseases.

The method is based on the fluorescence of two important coenzymes (biomolecules that work in concert with enzymes) when excited by a laser beam. The coenzymes - nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) - are involved in a large number of metabolic pathways in every cell. To find out the specific metabolic pathways affected by disease or stress, the Tufts scientists looked at three parameters: the ratio of FAD to NADH, the fluorescence "fade" of NADH, and the organization of the mitochondria as revealed by the spatial distribution of NADH within a cell (the energy producing "batteries" of the cell).

The first parameter - the relative amounts of FAD to NADH - can reveal how well the cell is consuming oxygen, metabolizing sugars, or producing or breaking down fat molecules. The second parameter - the fluorescence "fade" of NADH - reveals details about the local environment of the NADH. The third parameter - the spatial distribution of NADH in the cells - shows how the mitochondria split and fuse in response to cellular growth and stress.

"Taken together, these three parameters begin to provide more specific, and unique metabolic signatures of cellular health or dysfunction," said Irene Georgakoudi, Ph.D., corresponding author of the study and a professor of biomedical engineering in the School of Engineering at Tufts. "The power of this method is the ability to get the information on live cells, without the use of contrast agents or attached labels that could interfere with results."

Other methods exist for non-invasively tracking the metabolic signatures of disease, such as the PET scan, which is often used in research. But while PET scans provide low resolution information with excellent depth penetration into living tissues, the optical method introduced by the Tufts researchers detects metabolic activity at the resolution of single cells, although mostly near the surface.

That is not necessarily a limitation. Many diseases can be detected at the surface of tissues, including cancer, while many pre-clinical studies are performed with animal models and engineered three-dimensional tissues that can benefit from being monitored non-destructively. The method developed by Georgakoudi and colleagues may prove to be a powerful research tool for understanding their metabolic signatures.

###

Other authors on the paper are: lead author Zhiyi Liu, Dimitra Pouli, Carlo Alonzo, Antoine Varone, all of the Department of Biomedical Engineering at Tufts University; Kyle Quinn, formerly of the Department of Biomedical Engineering and now at the University of Arkansas; Sevasti Karaliota and Katia Karalis, of the Biomedical Research Foundation at the Academy of Athens, Greece; and Karl Münger, of the Sackler School of Graduate Biomedical Sciences at Tufts.

This work was supported by the National Institutes of Health (NIH R21EB019079, NIH K99EB017723 NIH R01CA066980 and R00EB017723) and the American Cancer Society (RSG-09-174-01-CCE). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Liu, Z., Pouli, D., Alonzo, C.A., Varone, A., Karaliota,S., Quinn, K.P., Münger, K., Karalis, K.P., Georgakoudi, I. "Mapping metabolic changes by noninvasive, multiparametric, high-resolution imaging using endogenous contrast" Sci. Adv. 2018; 4: eaap9302. DOI: 10.1126/sciadv.aap9302

About Tufts University

Tufts University, located on campuses in Boston, Medford/Somerville and Grafton, Massachusetts, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Media Contact

Mike Silver
mike.silver@tufts.edu
617-627-0545

 @TuftsUniversity

http://www.tufts.edu 

Mike Silver | EurekAlert!

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>