Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop eco-friendly, 4-in-1 catalyst

25.04.2017

Brown University researchers have developed a new composite catalyst that can perform four separate chemical reactions in sequential order and in one container to produce compounds useful in making a wide range of pharmaceutical products.

"It normally takes multiple catalysts to carry out all of the steps of this reaction," said Chao Yu, a post-doctoral researcher at Brown who co-led the work with graduate student Xuefeng Guo. "But we found a single nanocatalyst that can perform this multistep reaction by itself."


Catalysts like this new one developed at Brown University might help make industrial chemistry more sustainable.

Credit: Sun Lab / Seto Lab / Brown University

The research, described in the Journal of the American Chemical Society, was a collaboration between the labs of Brown professors Christopher Seto and Shouheng Sun, who are coauthors of the paper.

The work was done, the researchers said, with an eye toward finding ways of making the chemical industry more environmentally sustainable. Multi-reaction catalysts like this one are a step toward that goal.

"If you're running four different reactions separately, then you've got four different steps that require solvents and starting materials, and they each leave behind waste contaminated with byproducts from the reaction," Seto said. "But if you can do it all in one pot, you can use less solvent and reduce waste."

The team made their new catalyst by growing silver-palladium nanoparticles on the surface of nanorods made of oxygen-deficient tungsten-oxide (tungsten-oxide with a few of its oxygen atoms missing). The researchers showed that it could catalyze the series of reactions needed to convert common starting materials formic acid, nitrobenzene and an aldehyde into a benzoxazole, which can be used to make antibacterials, antifungals and NSAID painkillers. The researchers showed that the catalyst could also be used to create another compound, quinazoline, which is used in a variety of anti-cancer drugs.

Experiments showed that the catalyst could perform the four reactions with a nearly quantitative yield -- meaning it produces the maximum possible amount of product for a given amount of starting materials. The reactions were performed at a lower temperature, in a shorter amount of time, and using solvents that are more environmentally friendly than those normally used for these reactions.

"The temperature we used to synthesize this product is around 80 degrees Celsius," Guo said. "Normally the reaction happens around 130 degrees and you need to run the reaction for one or two days. But we can get a similar yield at 80 degrees in eight hours."

The new catalyst also is able to make the benzoxazole compounds using starting materials that are more environmentally benign than those generally used. The reaction chain requires a hydrogen source for its initial step. That source could be pure hydrogen gas, which is difficult to store and transport, or it could be extracted from a chemical compound. A compound called ammonia borane is often used for this purpose, but the new catalyst enables formic acid to be used instead, which is "cheaper, greener and less toxic," Yu said.

And while many catalysts tested in these reactions cannot be used more than once without severely damaging their efficiency, the researchers were able to use the new catalyst up to five times with little drop-off in reaction yield.

Sun says that studies like this one represents an emerging line of research in greener chemistry.

"Normally in catalysis we're doing one reaction at a time, with a different catalyst for each reaction" said Shouheng Sun, a professor of chemistry at Brown. "But there's growing interest in coming up with catalysts that can perform multiple reactions in one pot, and that's what we've done here."

###

The work was supported in part by the U.S. Army Research Laboratory and the U.S. Army Research Office (W911NF-15-1-0147).

Media Contact

Kevin Stacey
kevin_stacey@brown.edu
401-863-3766

 @brownuniversity

http://news.brown.edu/ 

Kevin Stacey | EurekAlert!

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>