Researchers develop novel drug delivery system

Now a team of researchers led by Boston University Biomedical Engineer and Chemist Mark Grinstaff has developed a unique material and drug delivery mechanism that could pave the way for implants that release a drug at a designated rate for months.

The system consists of a biocompatible, highly porous, three-dimensional polymer material containing a selected drug and a volume of air that slows infiltration from surrounding water. As water seeps into the material, it displaces the air, gradually releasing the drug.

“The idea was to create a 3D material that has polymer fibers throughout and air trapped within,” said Grinstaff, who developed the material in conjunction with BU biomedical engineering PhD student Stefan Yohe and Dr. Yolanda Colson, a Brigham and Women's Hospital thoracic surgeon and lung cancer specialist. “If we can slow the penetration of water into the structure, it will slow the release of the drug.”

To prevent water from flooding the structure and causing an immediate release of the drug, Grinstaff and his colleagues designed the air-filled, mesh-like material to be “superhydrophobic”—so water-resistant that droplets of water barely touch the surface, forming beads similar to those that appear on a freshly waxed car. They produced the porous polymer mesh using a process called electrospinning, which overlays micron-sized fibers upon one another.

To control the rate of drug release, they adjusted chemical and physical properties of the material so that the entrapped air is loosely or tightly held. The more tightly held the air is within the structure, the harder it is for water to displace it, the slower the release, and the longer the treatment duration.

Loaded with a widely used anti-cancer drug called SN-38 in in vitro experiments, the polymer mesh and internal air pocket proved to be robust and effective against lung cancer cells in solution for more than 60 days, indicating its suitability for long-term drug delivery. Grinstaff and his collaborators next plan to conduct a series of in vivo experiments to evaluate the system's efficiency and potential clinical effectiveness—a critical preliminary step before initiating clinical trials.

Supported by the National Institutes of Health, The Wallace H. Coulter Foundation, the Center for Integration of Medicine & Innovative Technology and Boston University, this research was originally sparked by the Grinstaff group's ongoing investigation of potential therapies for recurring lung cancer, and interest in the use of new materials and procedures to deliver drugs over the course of months.

“Many researchers are advancing new drug delivery systems, and several others are designing superhydrophobic materials, but we're combining these disciplines to see if we can open up new doors and enable more effective treatments for a wide range of diseases,” said Grinstaff.

The researchers detailed their novel drug delivery system in the January 16 online edition of the Journal of the American Chemical Society.

Media Contact

Michael Seele EurekAlert!

More Information:

http://www.bu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors