Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop computer-aided models to replace animal testing

02.10.2013
Every year, October 4 is all about the protection of animals. On World Animal Day, animal welfare organisations around the globe advocate the respectful treatment and welfare of animals.

One of the central demands of the animal activists is to abolish animal testing and to use alternative testing methods instead. In this context, the European Union has taken a huge step forward at the beginning of this year: On March 11 a full ban on the marketing of cosmetics and hygiene products tested on animals entered into force in the EU.

The search for alternative testing methods for safety assessment is thus more pressing than ever. The development of such non-animal testing methods, especially when it comes to reliably predicting long-term toxic effects, represents a major scientific challenge. The NOTOX project, which is co-funded by the European Commission and Cosmetics Europe, the European trade association of the cosmetics industry, significantly contributes to this endeavor by developing and validating predictive bioinformatics models characterizing long-term toxicity responses. “These computer-aided models will help predict possible long-term toxic effects on the human body”, explains Elmar Heinzle, Professor of Applied Biochemistry and Biochemical Engineering at Saarland University, who coordinates the NOTOX project. In consequence, the use of living organisms to test the safety of substances to be found in daily-life products such as make-up, soap or toothpaste is no longer needed.

Computer-aided models as an alternative to animal testing
The liver is the central organ for the elimination of toxic substances in the human body. Therefore NOTOX scientists closely examine in test-tube experiments how such substances affect human liver cells in the long run. The processes and reactions they observe in the cells are being translated into highly complex computer models. The overall goal is to develop algorithms that closely mimic the processes which actually take place in human tissues when exposed to toxic substances. These computational models will allow for reliable long-term predictions and thus help to replace animal testing in the long run.

In order to achieve this ambitious goal, NOTOX brings together eleven internationally renowned and interdisciplinary research teams from all over Europe, including academic research laboratories and four small and medium sized enterprises (SMEs). Apart from Professor Heinzle and his research team, additional partners from Saarland are involved in the project. These include the department of Genetics/Epigenetics at Saarland University, the German Research Centre for Artificial Intelligence (DFKI) as well as the European Research and Project Office GmbH – Eurice, responsible for the management of a large number of European research projects at Saarland University.

NOTOX in motion: Scientists open their labs for camera crew
Over several months a film team captured statements and pictures of NOTOX scientists in various settings and on different occasions: during project meetings and at work in their laboratories. The result is a vivid glance behind the scenes of the project, with exciting insights into the challenges of developing validated alternative testing methods. Moreover, the film shows how cutting-edge research on alternative testing methods contributes to improving the overall welfare of animals.

The NOTOX film is available on the project website: http://www.notox-sb.eu/film

About NOTOX: On the way to alternative testing methods
To advance research in the field of alternative testing methods for long-term systemic toxicity, the Research Initiative SEURAT-1 was established in 2011. It stands for “Safety Evaluation Ultimately Replacing Animal Testing”. This initiative, comprising six research projects as building blocks, pursues a common strategy “towards the replacement of current repeated dose systemic toxicity testing in human safety assessment”. One of the SEURAT-1 research projects is NOTOX, which started in 2011 and will run for five years. The 9 million € project is co-funded by the European Commission and Cosmetics Europe, the European trade association which represents the interests of the cosmetics industry. Project coordinator is Prof. Elmar Heinzle of Saarland University, Department of Biochemical Engineering. The research results achieved by SEURAT-1 projects will not only be relevant for the cosmetics industry, but are expected to also have an impact on the chemical and pharmaceutical industry.

Internet: http://www.notox-sb.eu

Further information on the project, please contact:
Project Coordination:
Prof. Elmar Heinzle
Universität des Saarlandes
Technische Biochemie
Gebäude A 1.5
66123 Saarbrücken
Tel: +49 681 302 2905
e.heinzle@mx.uni-saarland.de
Footage Material
The film as well as cleanfeed and additional footage material is available from the project management partner Eurice on request. Please contact:
Project Management
Dr. Verena Peuser
Eurice – European Research and Project Office GmbH
Science Park 1
66123 Saarbrücken
Tel. +49 681 9592 3396
v.peuser@eurice.eu

Saar - Uni - Presseteam | Universität des Saarlandes
Further information:
http://www.notox-sb.eu
http://www.notox-sb.eu/film
http://www.uni-saarland.de

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>