Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Design Alzheimer’s Antibodies

13.12.2011
Researchers at Rensselaer Polytechnic Institute have developed a new method to design antibodies aimed at combating disease. The surprisingly simple process was used to make antibodies that neutralize the harmful protein particles that lead to Alzheimer’s disease.

The process is reported in the Dec. 5 Early Edition of the journal Proceedings of the National Academy of Sciences (PNAS). The process, outlined in the paper, titled “Structure-based design of conformation- and sequence-specific antibodies against amyloid â,” could be used as a tool to understand complex disease pathology and develop new antibody-based drugs in the future.

Antibodies are large proteins produced by the immune system to combat infection and disease. They are comprised of a large Y-shaped protein topped with small peptide loops. These loops bind to harmful invaders in the body, such as a viruses or bacteria. Once an antibody is bound to its target, the immune system sends cells to destroy the invader. Finding the right antibody can determine the difference between death and recovery.

Scientists have long sought methods for designing antibodies to combat specific ailments. However, the incredible complexity of designing antibodies that only attached to a target molecule of interest has prevented scientists from realizing this ambitious goal.

When trying to design an antibody, the arrangement and sequence of the antibody loops is of utmost importance. Only a very specific combination of antibody loops will bind to and neutralize each target. And with billions of different possible loop arrangements and sequences, it is seemingly impossible to predict which antibody loops will bind to a specific target molecule.

The new antibody design process was used to create antibodies that target a devastating molecule in the body: the Alzheimer’s protein. The research, which was led by Assistant Professor of Chemical and Biological Engineering Peter Tessier, uses the same molecular interactions that cause the Alzheimer’s proteins to stick together and form the toxic particles that are a hallmark of the disease.

“We are actually exploiting the same protein interactions that cause the disease in the brain to mediate binding of antibodies to toxic Alzheimer’s protein particles,” Tessier said.

Alzheimer’s disease is due to a specific protein – the Alzheimer’s protein – sticking together to form protein particles. These particles then damage the normal, healthy functions of the brain. The formation of similar toxic protein particles is central to diseases such as Parkinson’s and mad cow disease.

Importantly, the new Alzheimer’s antibodies developed by Tessier and his colleagues only latched on to the harmful clumped proteins and not the harmless monomers or single peptides that are not associated with disease.

Tessier and his colleagues see the potential for their technique being used to target and better understand similar types of protein particles in disorders such as Parkinson’s disease.

“By binding to specific portions of the toxic protein, we could test hypotheses about how to prevent or reverse cellular toxicity linked to Alzheimer’s disease,” Tessier said.

In the long term, as scientists learn more about methods to deliver drugs into the extremely well-protected brain tissue, the new antibody research may also help to develop new drugs to combat disorders such as Alzheimer’s disease.

The research was funded by the Alzheimer’s Association, the National Science Foundation (NSF), and the Pew Charitable Trust.

Tessier was joined in the research by Rensselaer graduate students Joseph Perchiacca (co-first author), Ali Reza Ladiwala (co-first author), and Moumita Bhattacharya.

Gabrielle DeMarco | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Life Sciences:

nachricht Preserved and fresh – Neutrons show details of the freeze drying process
27.02.2020 | Technische Universität München

nachricht Detect cell changes faster
27.02.2020 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Preserved and fresh – Neutrons show details of the freeze drying process

27.02.2020 | Life Sciences

Underwater Snail-o-Bot gets kick from light

27.02.2020 | Health and Medicine

Explained: Why water droplets 'bounce off the walls'

27.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>