Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create vaccine for dust-mite allergies

23.07.2014

Vaccine reduced lung inflammation to allergens in lab and animal tests

If you’re allergic to dust mites (and chances are you are), help may be on the way.


Dust mites are tiny and ubiquitous, but they cause big allergic reactions for many people. University of Iowa researchers have created a vaccine that may provide relief to dust-mite allergies. Illustration by Austin Smoldt-Sáenz.

Researchers at the University of Iowa have developed a vaccine that can combat dust-mite allergies by naturally switching the body’s immune response. In animal tests, the nano-sized vaccine package lowered lung inflammation by 83 percent despite repeated exposure to the allergens, according to the paper, published in the AAPS (American Association of Pharmaceutical Scientists) Journal. One big reason why it works, the researchers contend, is because the vaccine package contains a booster that alters the body’s inflammatory response to dust-mite allergens.

“What is new about this is we have developed a vaccine against dust-mite allergens that hasn’t been used before," says Aliasger Salem, professor in pharmaceutical sciences at the UI and a corresponding author on the paper.

... more about:
»CA1 »CpG »Pharmacy »R21 »allergens »allergies »exposure »immune »inflammation »lung

Dust mites are ubiquitous, microscopic buggers who burrow in mattresses, sofas, and other homey spots. They are found in 84 percent of households in the United States, according to a published, national survey. Preying on skin cells on the body, the mites trigger allergies and breathing difficulties among 45 percent of those who suffer from asthma, according to some studies. Prolonged exposure can cause lung damage.

Treatment is limited to getting temporary relief from inhalers or undergoing regular exposure to build up tolerance, which is long term and holds no guarantee of success.

“Our research explores a novel approach to treating mite allergy in which specially-encapsulated miniscule particles are administered with sequences of bacterial DNA that direct the immune system to suppress allergic immune responses," says Peter Thorne, public health professor at the UI and a contributing author on the paper. "This work suggests a way forward to alleviate mite-induced asthma in allergy sufferers.”

The UI-developed vaccine takes advantage of the body’s natural inclination to defend itself against foreign bodies. A key to the formula lies in the use of an adjuvant—which boosts the potency of the vaccine—called CpG. The booster has been used successfully in cancer vaccines but never had been tested as a vaccine for dust-mite allergies. Put broadly, CpG sets off a fire alarm within the body, springing immune cells into action. Those immune cells absorb the CpG and dispose of it.

This is important, because as the immune cells absorb CpG, they’re also taking in the vaccine, which has been added to the package, much like your mother may have wrapped a bitter pill around something tasty to get you to swallow it. In another twist, combining the antigen (the vaccine) and CpG causes the body to change its immune response, producing antibodies that dampen the damaging health effects dust-mite allergens generally cause.

In lab tests, the CpG-antigen package, at 300 nanometers in size, was absorbed 90 percent of the time by immune cells, the UI-led team reports. The researchers followed up those experiments by giving the package to mice and exposing the animals to dust-mite allergens every other day for nine days total. In analyses conducted at the UI College of Public Health, packages with CpG yielded greater production of the desirable antibodies, while lung inflammation was lower than particles that did not contain CpG, the researchers report.

“This is exactly what we were hoping for,” says Salem, whose primary appointment is in the College of Pharmacy.

The researchers will continue to test the vaccine in the hope that it can eventually be used to treat patients.

The paper’s first author is Vijaya Joshi, a graduate fellow in pharmacy at the UI. Contributing authors, all from the UI, include Andrea Dodd, Xuefang Jing, Amaraporn Wongrakpanich and Katherine Gibson-Corley.

The National Institutes of Health (grant numbers: P30 ES005605, R21 CA1 13345-01, R21 CA1 28414-01), the American Cancer Society and the UI’s Lyle and Sharon Bighley professorship funded the research.

Contacts

Aliasger Salem, College of Pharmacy, 319-335-8810
Richard Lewis, Office of Strategic Communication, 319-384-0012

Richard Lewis | Eurek Alert!
Further information:
http://now.uiowa.edu/2014/06/researchers-create-vaccine-dust-mite-allergies

Further reports about: CA1 CpG Pharmacy R21 allergens allergies exposure immune inflammation lung

More articles from Life Sciences:

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Social networks reveal dating in blue tits
20.02.2020 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Sweet beaks: What Galapagos finches and marine bacteria have in common

20.02.2020 | Life Sciences

Social networks reveal dating in blue tits

20.02.2020 | Life Sciences

More focus and comfort at telephone workstations

20.02.2020 | Communications Media

VideoLinks
Science & Research
Overview of more VideoLinks >>>