Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Create Method to Rapidly Identify Specific Strains of Illness

11.07.2013
Researchers from Boston University School of Medicine (BUSM) and George Washington University (GWU) have developed a method to rapidly identify pathogenic species and strains causing illnesses, such as pneumonia, that could help lead to earlier detection of disease outbreaks and pinpoint effective treatments more quickly. The findings are featured online in the journal Genome Research.

Emerging sequencing technologies have revolutionized the collection of genomic data for bioforensics, biosurveillance and for use in clinical settings. However, new approaches are being developed to analyze these large volumes of genetic data.

Principal investigator Evan Johnson, PhD, assistant professor of medicine at BUSM, and Keith Crandall, PhD, director of the Computational Biology Institute at GWU, have created a statistical framework called Pathoscope to identify pathogenic genetic sequences from infected tissue samples.

This unique approach can accurately discriminate between closely related strains of the same species with little coverage of the pathogenic genome. The method also can determine the complete composition of known pathogenic and benign organisms in a biological sample. No other method can accurately identify multiple species or substrains in such a direct and automatic way. Current methods, such as the standard polymerase chain reaction detection or microscope observation, are often imperfect and time-consuming.

“Pathoscope is like completing a complex jigsaw puzzle. Instead of manually assembling the puzzle, which can take days or weeks of tedious effort, we use a statistical algorithm that can determine how the picture should look without actually putting it together,” said Johnson. “Our method can characterize a biological sample faster, more accurately and in a more automated fashion than any other approach out there.”

This work will be relevant in a broad range of scenarios. For example, in hospitals, this sequencing method will allow for rapid screening of thousands of infectious pathogens simultaneously, while being sensitive enough to monitor disease outbreaks caused by specific pathogenic strains. Veterinarians can even apply the method in their practices. This research is also applicable outside of clinical settings, allowing officials to quickly identify agents of bioterrorism (e.g. in a tainted letter) and harmful pathogens on hard surfaces, soil, water or in food products.

“This approach has the ability to drastically change the process for identifying and combating pathogens, whether they’re in a hospital, veterinarian’s office or salmon stream,” Crandall said. Researchers plan to conduct more studies to further verify the efficacy of their approach, and will soon begin to work with the aquaculture industry, helping fishermen with water-quality surveillance.

Funding for this research was provided in part by the National Institutes of Health’s (NIH) National Human Genome Research Institute under grant award number R01HG00569.

Gina Orlando | EurekAlert!
Further information:
http://www.bmc.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>