Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create a photographic film of a molecular switch

19.06.2020

Molecular switches are the molecular counterparts of electrical switches and play an important role in many processes in nature. Nanotechnologist now produced a photographic film at the atomic level and thus tracked the motion of a molecular building block. The result was a light-controlled "pedalo-type motion", going forward and backward. The study has been published in the "The Journal of Physical Chemistry Letters".

Molecular switches – they are the molecular counterparts of electrical switches and play an important role in many processes in nature. Such molecules can reversibly interconvert between two or more states and thereby control molecular processes.


Molecular structure of the photo-responsive molecular switch (center) surrounded by solvent molecules. The scientists revealed a light-induced pedalo-type motion. The image is on the cover of the recent print edition of the journal.

I. Conti et al.(2020),TJPCL,ACS

In living organisms, for example, they play a role in muscle contraction but also our visual perception is based on the dynamics of a molecular switch in the eye.

Scientists are working intensively to develop novel molecular components that enable switching between different states, so that molecular processes can be specifically controlled.

A European research team led by nanotechnologist Dr. Saeed Amirjalayer from the University of Münster now gained a deeper insight into the processes of a molecular switch: Using molecular dynamics simulations, the scientists produced a photographic film at the atomic level and thus tracked the motion of a molecular building block.

The result was a light-controlled "pedalo-type motion", going forward and backward. Although it had already been predicted in this context in earlier work, it could not be directly proven so far.

In the future, the results may help to control the properties of materials with the help of molecular switches – for example, in order to release drugs specifically from nano-capsules.

"For efficient embedding in novel responsive materials, detailed elucidation of the switching process and thus the way they function at the molecular and atomic level is crucial," emphasizes Dr. Saeed Amirjalayer, group leader at the Institute of Physics at Münster University and the Center for Nanotechnology (CeNTech). The study has been published in the "The Journal of Physical Chemistry Letters".

Background and methods:

Molecular dynamics simulations enable, by calculating the interactions between atoms and molecules, to describe their motion in the computer. In their current study, the scientists investigated an azodicarboxamide-based molecular switch in this way, using a so-called combined quantum mechanical/molecular mechanical method in the simulations.

"Previous experimental and theoretical studies provided only an indirect insight into the operation mechanism of such a switch in solution. With the help of our theoretical approach, we could now follow the light-induced dynamics while taking the molecular environment into account," explains Saeed Amirjalayer.

The pedalo-type motion of the switch, triggered by light, moves backward and forward – like a bicycle pedal. Detailed understanding of the operation mechanism of a photo-responsive switch forms an important basis for the application of these molecular building blocks in novel "intelligent" functional materials.

In addition to the University of Münster, the Universities of Bologna (Italy) and Amsterdam (Netherlands) were involved in the study. "Despite the current circumstances in the wake of the Corona crisis, the cross-border exchange with colleagues from Europe could take place – virtually, but still very intensively. Together we achieved interesting and valuable results," says Saeed Amirjalayer summing up the cooperation.

Funding:

This work was supported by German Research Foundation (DFG) and The Netherlands Organization for Scientific Research (NWO).

Wissenschaftliche Ansprechpartner:

Dr. Saeed Amirjalayer (University of Münster)
Email: s.amirjalayer@wwu.de
Fon: +49 (0)251 83 63919
http://www.samirjalayer.de

Originalpublikation:

I. Conti et al. (2020): Photoinduced Forward and Backward Pedalo-Type Motion of a Molecular Switch. The Journal of Physical Chemistry Letters; DOI: 10.1021/acs.jpclett.0c01094

Weitere Informationen:

https://pubs.acs.org/doi/full/10.1021/acs.jpclett.0c01094 Original publication in "The Journal of Physical Chemistry Letters"
https://www.samirjalayer.de/ Research group "Stimuli-Responsive Nanomaterials Group" at Münster University
https://www.uni-muenster.de/forschung/profil/schwerpunkt/nanowissenschaften.html Research focus “Nanosciences” at Münster University

Svenja Ronge | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Bioactive natural compounds for the fight against cancer
25.06.2020 | Technische Universität Dresden

nachricht "Green brother" of PET - LIKAT Simplifies Procedure for the Building Blocks of the Bio-Polymer PEF
24.06.2020 | Leibniz-Institut für Katalyse

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

Im Focus: Virtually Captured

Biomechanical analyses and computer simulations reveal the Venus flytrap snapping mechanisms

The Venus flytrap (Dionaea muscipula) takes only 100 milliseconds to trap its prey. Once their leaves, which have been transformed into snap traps, have...

Im Focus: NASA observes large Saharan dust plume over Atlantic ocean

NASA-NOAA's Suomi NPP satellite observed a huge Saharan dust plume streaming over the North Atlantic Ocean, beginning on June 13. Satellite data showed the dust had spread over 2,000 miles.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, Colin Seftor, an atmospheric scientist, created an animation of the dust and aerosols from the...

Im Focus: Researchers create a photographic film of a molecular switch

Molecular switches are the molecular counterparts of electrical switches and play an important role in many processes in nature. Nanotechnologist now produced a photographic film at the atomic level and thus tracked the motion of a molecular building block. The result was a light-controlled "pedalo-type motion", going forward and backward. The study has been published in the "The Journal of Physical Chemistry Letters".

Molecular switches – they are the molecular counterparts of electrical switches and play an important role in many processes in nature. Such molecules can...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

An innovative catalyst with Pt, Re and SnO2 nanoparticles as anode material in ethanol fuel cells

25.06.2020 | Materials Sciences

Researchers sharply reduce time needed for glass and ceramic 3D printing

25.06.2020 | Materials Sciences

Bioactive natural compounds for the fight against cancer

25.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>