Researchers from CIC bioGUNE have found a way to treat ischemic pathologies

The results of this research project, which was initiated in 2005 and is supported by Bizkaia:Xede and the Basque Government's Etortek programme, were published in the prestigious scientific journal Circulation.

By activating a protein called HIF, the strategy is to stimulate revascularisation and the repair of the damaged organ following ischemia caused by the obstruction of a blood vessel preventing normal blood flow. These obstructions occur, for example, in the event of thrombosis in a limb, myocardial infarction or a stroke. In this sense, it is important to highlight the fact that cardiovascular diseases are the principal cause of death throughout the world (in the European Union, they account for 40% of all deaths, a figure equivalent to 2 million deaths per year).

In general, cells tend to respond to the lack of oxygen caused by poor blood flow by activating HIF. However, in the case of an ischemic pathology, HIF is not sufficiently activated.

Dr Berra, Cellular Biology and Stem Cell Unit's leader, stated that they decided to over-produce HIF following ischemia as an attractive therapeutic alternative. For their research purposes, they used an ischemic model provoked in a mouse leg through ligation of the femoral artery. In other words, they closed off the femoral artery and stopped the blood flow to the limb. When this happens, the leg develops necrosis and after a time, the mouse dies.

The aim was to artificially help stimulate the production of HIF after the femoral artery had been closed off. And they saw that when they did this, the mouse's leg revascularised and no longer entered into a degenerative process.

How is this high level of HIF production achieved? HIF is a protein which, when not required, degrades constitutively and this degradation is regulated by enzymes called PHDs.

These enzymes hydroxylate HIF and, as a result of this hydroxylation, the protein degrades. Therefore, when these enzymes are inhibited, HIF cannot degrade and so accumulates. To inhibit PHDs, they use siRNAs, explains Dr Berra.

Media Contact

Oihane Lakar EurekAlert!

More Information:

http://www.elhuyar.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors