Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Block Pathway to Cancer Cell Replication

04.07.2012
NOTCH1 Signaling Promotes T-Cell Acute Lymphoblastic Leukemia-Initiating Cell Regeneration

Research suggests that patients with leukemia sometimes relapse because standard chemotherapy fails to kill the self-renewing leukemia initiating cells, often referred to as cancer stem cells. In such cancers, the cells lie dormant for a time, only to later begin cloning, resulting in a return and metastasis of the disease.

One such type of cancer is called pediatric T cell acute lymphoblastic leukemia, or T-ALL, often found in children, who have few treatment options beyond chemotherapy.

A team of researchers – led by Catriona H. M. Jamieson, MD, PhD, associate professor of medicine at the University of California, San Diego School of Medicine and Director of Stem Cell Research at UC San Diego Moores Cancer Center – studied these cells in mouse models that had been transplanted with human leukemia cells. They discovered that the leukemia initiating cells which clone, or replicate, themselves most robustly activate the NOTCH1 pathway, usually in the context of a mutation.

Earlier studies showed that as many as half of patients with T-ALL have mutations in the NOTCH1 pathway – an evolutionarily conserved developmental pathway used during differentiation of many cell and tissue types. The new study shows that when NOTCH1 activation was inhibited in animal models using a monoclonal antibody, the leukemia initiating cells did not survive. In addition, the antibody treatment significantly reduced a subset of these cancer stem cells (identified by the presence of specific markers, CD2 and CD7, on the cell surface.)

“We were able to substantially reduce the potential of these cancer stem cells to self-renew,” said Jamieson. “So we’re not just getting rid of cancerous cells: we’re getting to the root of their resistance to treatment – leukemic stem cells that lie dormant.”

The study results suggest that such therapy would also be effective in other types of cancer stem cells, such as those that cause breast cancer, that also rely on NOTCH1 for self-renewal.

“Therapies based on monoclonal antibodies that inhibit NOTCH 1 are much more selective than using gamma-secretase inhibitors, which also block other essential cellular functions in addition to the NOTCH1 signaling pathway,” said contributor A. Thomas Look, MD of Dana-Farber/Children Hospital Cancer Center in Boston. “We are excited about the promise of NOTCH1-specific antibodies to counter resistance to therapy in T-ALL and possibly additional types of cancer.”

In investigating the role of NOTCH1 activation in cancer cell cloning, the researchers showed that leukemia initiating cells possess enhanced survival and self-renewal potential in specific blood-cell, or hematopoietic, niches: the microenvironment of the body in which the cells live and self-renew.

The scientists studied the molecular characterization of CD34+ cells – a protein that shows expression in early hematopoietic cells and that facilitates cell migration – from a dozen T-ALL patient samples.

They found that mutations in NOTCH1 and other genes capable of promoting the survival of cancer stem cells co-existed in the CD34+ niche. Mice transplanted with CD34-enriched NOTCH1 mutated T-ALL cells demonstrated significantly greater leukemic cloning potential than did mice without the NOTCH1 mutation. The mutated cells were uniquely susceptible to targeted inhibition with a human monoclonal antibody, according to the scientists.

Additional contributors to the study include Wenxue Ma, Daniel J. Goff, Ifat Geron, Anil Sadarangani, Christina A. M. Jamieson, Angela C. Court, Alice Y. Shih, Qingfei Jiang, Christina C. Wu, Kristen M. Smith, Leslie A. Crews, Ida Deichaite, Sheldon R. Morris and Dennis A. Carson, UC San Diego Department of Medicine and Stem Cell Program, UC San Diego Moores Cancer Center; Alejandro Gutierrez, Dana-Farber/Children Hospital Cancer Center in Boston; and Kang Li, Ping Wei and Neil W. Gibson, Oncology Research Unit, Pfizer Global Research and Development, La Jolla Laboratories, San Diego.

This work was supported by the Ratner Family Foundation, the Leichtag Family Foundation, and Moores Cancer Center Donor Funds; grants from the National Institute of Health (1K08CA133103 and 5P01CA68484); the William Lawrence Foundation, and the American Society of Hematology-Amos Medical Faculty Development program. Jamieson’s work was supported by the California Institute for Regenerative Medicine (CIRM).

Debra Kain | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>