Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers attempt to solve problems of antibiotic resistance and bee deaths in one

14.03.2012
The stomachs of wild honey bees are full of healthy lactic acid bacteria that can fight bacterial infections in both bees and humans.

A collaboration between researchers at three universities in Sweden – Lund University, the Swedish University of Agricultural Sciences and Karolinska Institutet – has produced findings that could be a step towards solving the problems of both bee deaths and antibiotic resistance.

The researchers have now published their results in the scientific journal PloS ONE and the legendary science photographer Professor Lennart Nilsson from Karolinska Institutet has illustrated the findings with his unique images.

Today, many people eat healthy lactic acid bacteria that are added to foods such as yogurt.

“In our previous studies, we have looked at honey bees in Sweden. What we have now found from our international studies is that, historically, people of all cultures have consumed the world’s greatest natural blend of healthy bacteria in the form of honey”, says Alejandra Vasquez, a researcher at Lund University.

In wild and fresh honey, which honey hunters collect from bees’ nests in high cliffs and trees, there are billions of healthy lactic acid bacteria of 13 different types. This is in comparison with the 1–3 different types found in commercial probiotic products, she explains.

The honey bees have used these bacteria for 80 million years to produce and protect their honey and their bee bread (bee pollen), which they produce to feed the entire bee colony. The researchers have now also shown that the healthy lactic acid bacteria combat the two most serious bacterial diseases to affect honey bees.

In the journal article, the researchers describe how the bees have these healthy bacteria in their honey stomachs and that they get the bacteria as newborns from the adult bees that feed them. The researchers have also seen that large quantities of harmful microorganisms such as bacteria, yeasts and fungi are found in the nectar and pollen that the bees collect from flowers to make honey and bee bread. These microorganisms could destroy the food through fermentation and mould in just a couple of hours, but in fact, the healthy bacteria in the honey stomach kill all the microorganisms.

“As humans have learnt to use honey to treat sore throats, colds and wounds, our hypothesis is that the healthy bee bacteria can also kill harmful disease bacteria in humans. We have preliminary, unpublished results which show that this could be a new tool to complement or even replace antibiotics”, says Alejandra Vasquez.

The present study also shows that bees’ healthy bacteria die when beekeepers treat bees preventively with antibiotics, which primarily happens in the USA. The bees have their own defence system against disease in the form of cooperative healthy bacteria. However, this system is weakened in commercially farmed bees that are treated with antibiotics, suffer stress, eat synthetic food instead of their own honey and bee bread and are forced to fly in fields sprayed with pesticides.

“Our results provide the research community with an undiscovered key that could explain why bees are dying worldwide in the mysterious ‘colony collapse disorder’”, says Tobias Olofsson.

Researchers at Lund University:
Dr Alejandra Vásquez, email: alejandra.vasquez@med.lu.se, mobile: +46 705 898089
Dr Tobias Olofsson, email: tobias.olofsson@med.lu.se, mobile: +46 706 837683

Helga Ekdahl Heun | idw
Further information:
http://www.lu.se
http://dx.plos.org/10.1371/journal.pone.003318

More articles from Life Sciences:

nachricht A landscape of mammalian development
21.02.2019 | Max-Planck-Institut für molekulare Genetik

nachricht Atopic dermatitis: elevated salt concentrations in affected skin
21.02.2019 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A landscape of mammalian development

21.02.2019 | Life Sciences

Surprising findings on forest fires

21.02.2019 | Earth Sciences

Atopic dermatitis: elevated salt concentrations in affected skin

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>