Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers attempt to solve problems of antibiotic resistance and bee deaths in one

14.03.2012
The stomachs of wild honey bees are full of healthy lactic acid bacteria that can fight bacterial infections in both bees and humans.

A collaboration between researchers at three universities in Sweden – Lund University, the Swedish University of Agricultural Sciences and Karolinska Institutet – has produced findings that could be a step towards solving the problems of both bee deaths and antibiotic resistance.

The researchers have now published their results in the scientific journal PloS ONE and the legendary science photographer Professor Lennart Nilsson from Karolinska Institutet has illustrated the findings with his unique images.

Today, many people eat healthy lactic acid bacteria that are added to foods such as yogurt.

“In our previous studies, we have looked at honey bees in Sweden. What we have now found from our international studies is that, historically, people of all cultures have consumed the world’s greatest natural blend of healthy bacteria in the form of honey”, says Alejandra Vasquez, a researcher at Lund University.

In wild and fresh honey, which honey hunters collect from bees’ nests in high cliffs and trees, there are billions of healthy lactic acid bacteria of 13 different types. This is in comparison with the 1–3 different types found in commercial probiotic products, she explains.

The honey bees have used these bacteria for 80 million years to produce and protect their honey and their bee bread (bee pollen), which they produce to feed the entire bee colony. The researchers have now also shown that the healthy lactic acid bacteria combat the two most serious bacterial diseases to affect honey bees.

In the journal article, the researchers describe how the bees have these healthy bacteria in their honey stomachs and that they get the bacteria as newborns from the adult bees that feed them. The researchers have also seen that large quantities of harmful microorganisms such as bacteria, yeasts and fungi are found in the nectar and pollen that the bees collect from flowers to make honey and bee bread. These microorganisms could destroy the food through fermentation and mould in just a couple of hours, but in fact, the healthy bacteria in the honey stomach kill all the microorganisms.

“As humans have learnt to use honey to treat sore throats, colds and wounds, our hypothesis is that the healthy bee bacteria can also kill harmful disease bacteria in humans. We have preliminary, unpublished results which show that this could be a new tool to complement or even replace antibiotics”, says Alejandra Vasquez.

The present study also shows that bees’ healthy bacteria die when beekeepers treat bees preventively with antibiotics, which primarily happens in the USA. The bees have their own defence system against disease in the form of cooperative healthy bacteria. However, this system is weakened in commercially farmed bees that are treated with antibiotics, suffer stress, eat synthetic food instead of their own honey and bee bread and are forced to fly in fields sprayed with pesticides.

“Our results provide the research community with an undiscovered key that could explain why bees are dying worldwide in the mysterious ‘colony collapse disorder’”, says Tobias Olofsson.

Researchers at Lund University:
Dr Alejandra Vásquez, email: alejandra.vasquez@med.lu.se, mobile: +46 705 898089
Dr Tobias Olofsson, email: tobias.olofsson@med.lu.se, mobile: +46 706 837683

Helga Ekdahl Heun | idw
Further information:
http://www.lu.se
http://dx.plos.org/10.1371/journal.pone.003318

More articles from Life Sciences:

nachricht Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination
13.07.2020 | Kanazawa University

nachricht Researchers present concept for a new technique to study superheavy elements
13.07.2020 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>