Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at IST Austria define function of an enigmatic synaptic protein

22.11.2017

Synaptotagmin 7 ensures efficiency of inhibitory signal transmission – Study published in Cell Reports

Communication is often mired in contradiction – also in the brain. Neuroscientists at IST Austria were now able to resolve one such contradiction.


The triple function of Synaptotagmin 7

Chen et al, Cell Reports

In our brains, neurons communicate by sending chemical signals across their connections, the synapses. The molecular machinery required to send a signal involves not only the signal itself, the neurotransmitter, but a large variety of other proteins that act as sensors, effectors, modulators, and scaffolds. Synaptotagmins are part of this complex machinery.

Synaptotagmin proteins come in many flavours: humans and other mammals have 17 different varieties. For most of these proteins, however, scientists do not yet understand the function. A group of neuroscientists led by Peter Jonas, Professor at the Institute of Science and Technology Austria (IST Austria), have now resolved the role of Synaptotagmin 7 during signal transmission at an inhibitory synapse.

Writing in Cell Reports, the team, including first author and PhD student Chong Chen as well as researchers at the Max Planck Florida Institute for Neuroscience, shows that Synaptotagmin 7 ensures the efficiency of high-frequency inhibitory synaptic transmission. “The role of Synaptotagmin 7 has been controversial. For the first time, we defined its functional contribution at an inhibitory GABAergic synapse”, explains lead author Peter Jonas.

Conflicting role in signal transmission

Only in January of this year, Jonas and Chen showed that Synaptotagmin 2 is the calcium sensor that makes certain synapses fast – those that use the transmitter GABA. In the current study, the researchers turned their attention to another member of the Synaptotagmin family, Synaptotagmin 7. The brain contains a large amount of Synaptotagmin 7, but so far, scientists were not able to pinpoint the protein’s function. Partly, the reason is a contradiction between the function Synaptotagmin 7 seemed to have, and the characteristics of signal transmission observed.

Synaptotagmin 7 appears to function as a calcium sensor that mediates the release of a variable barrage of neurotransmitter into the synaptic cleft, a phenomenon called asynchronous transmitter release. There are also indications that Synaptotagmin 7 plays a role in facilitation, an increase in neurotransmission at the synapse.

But on the other hand Synaptotagmin 7 is also found in large amounts in a class of neurons called fast-spiking, parvalbumin-expressing GABAergic interneurons. These neurons form synapses which appear to contradict the suggested functions of Synaptotagmin 7: the synapses release neurotransmitter in a tightly synchronized manner, rather than asynchronously, and show a reduction in neurotransmission, rather than facilitation during repetitive stimulation. In their study, Chen et al. now resolve this apparent contradiction.

Synaptotagmin 7 regulates information flow in cerebellum

The researchers investigated how signal transmission changes when they delete Synaptotagmin 7 in an inhibitory synapse, the GABAergic synapse between the basket cells (BCs) and Purkinje cells (PCs) in the cerebellum (a brain region required for motor control). They show that, indeed, the function of Synaptotagmin 7 is to contribute to asynchronous transmitter release, replenishment of vesicles containing neurotransmitter, and facilitation.

But rather than being mutually exclusive, these three functions appear to coexist at BC-PC synapses. Elucidating the effects of Synaptotagmin 7 required careful analysis, because asynchronous release is small and facilitation is overlaid by depression. However the authors demonstrate a substantial difference in the extent of depression. Little depression occurred in the presence of Synaptotagmin 7, but a lot of depression was found in the absence of Synaptotagmin 7. Thus, Synaptotagmin 7 ensures the efficient and frequency-independent signal transmission at the BC-PC synapse, one of its fundamental properties.

When the researchers looked at the level of neuronal networks, they found that Synaptotagmin 7 allows single basket cells to control the activity of a Purkinje cell. These neurons are the only ones that send information out of the cerebellum. Synaptotagmin 7 therefore has a strategic position to regulate the flow of information in this motor circuit.

The researchers also found that Synaptotagmin 7 plays a similar (albeit quantitatively smaller) role at BC synapses in the hippocampus, a seahorse-shaped brain region involved in memory and spatial coding. Peter Jonas summarizes: “We have identified a critical role for Synaptotagmin 7 in maintaining the efficacy of transmission at GABAergic synapses in the cerebellum and hippocampus.”

Author biographies

Peter Jonas seeks to understand the function of neuronal microcircuits. His group quantitatively addresses the mechanisms of synaptic signalling at inhibitory synapses releasing GABA. Among other awards, Peter Jonas received the Wittgenstein Award 2016, two ERC Advanced Grants, and the Gottfried Wilhelm Leibniz Award. He is Member of the Academia Europaea and the German Academy of Sciences Leopoldina. Peter Jonas joined IST Austria in 2010. Chong Chen is a PhD student in the group of Peter Jonas. He joined IST Austria’s interdisciplinary graduate school in 2014. Before he came to IST, he earned a master of medicine degree at the School of Medicine, Shanghai Jiaotong University.

IST Austria

The Institute of Science and Technology (IST Austria) is a PhD granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor’s or master’s degree in biology, neuroscience, mathematics, computer science, physics, and related areas. See www.ist.ac.at

Source:

Chen, Chong et al.: "Triple function of synaptotagmin 7 ensures efficiency of high-frequency transmission at central GABAergic synapses"
DOI: 10.1016/j.celrep.2017.10.122

Weitere Informationen:

http://ist.ac.at/de/research-groups-pages/welcome-to-the-jonas-lab/ Website of Professor Jonas' research group

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Further reports about: GABAergic cerebellum proteins signal transmission synaptic synaptic protein

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>