Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at IRB Barcelona explain the origin of the periodicity of the genome

05.11.2018

Scientists at the Institute for Research in Biomedicine (IRB Barcelona) have found an explanation for a periodicity in the sequence of the genomes of all eukaryotes, from yeast to humans. The results published in the journal Cell offer an alternative explanation to the one based on natural selection, which has been accepted by the scientific community to date.

The researchers demonstrate that DNA damage and repair processes can play a role in the generation of sequence periodicity in the genomes of eukaryotic organisms.


The DNA molecule, formed by a double helix, winds around histone molecules twice, thus forming nucleosomes. The pink regions indicate those enriched in adenine/thymine base pairs.

Author: Iris Joval Granollers

These processes are influenced by the orientation of the DNA structure when this molecule is packaged inside the cell nucleus, thus favouring a certain composition with a periodic nature in eukaryotic genomes.

"The answer we provide allows a better understanding of why our genome and that of other species have developed into what they are today," says Núria López-Bigas, head of the study and leader of the Biomedical Genomics lab at IRB Barcelona.

The "mysterious" periodicity of the genome

Since the sequence of the human genome and that of other organisms such as the mouse and fruit fly became known at the beginning of the 21st century, some researchers have noted a marked periodicity in the proportion of base pairs comprising adenine (A) and thymine (T). Indeed, the proportion of A/T pairs has been observed to be greater every 10 base pairs.

This periodicity has been associated with how DNA winds around nucleosomes (the simplest compaction form of DNA, in which it envelopes proteins called histones).

The explanation given has been that natural selection would favour the appearance of A/T bases as these bases would provide the DNA structure with a greater degree of flexibility, thus allowing it to wind around histones to form nucleosomes.

Tumour mutations provide the key

By studying the distribution of mutations in more than 3,000 human tumours, the team at IRB Barcelona observed that the mutations also accumulated every 10 DNA base pairs.

?"By examining mutation distribution along the genomes in regions in which we ruled out the presence of selection, we found a marked periodicity of 10 base pairs in the DNA that forms part of nucleosomes," explains Oriol Pich, PhD student and awardee of a fellowship from the Barcelona Institute of Science and Technology (BIST) and first author of the paper.

The periodicity of mutations occurs because the structure of the DNA packaged inside the nucleosome favours the appearance of regions that are prone to damage and to repair. Consequently, these regions are more susceptible to mutations.

Next, the researchers turned their attention to mutations that are passed from one generation to another, in both humans and plants. They found that these hereditary mutations also accumulated every 10 base pairs.

With this new discovery of how nucleosomes affect DNA mutations, the researchers deduced that it could also explain the development of the mysterious periodicity of the sequence of eukaryotic genomes.

Mutations over millions of years of evolution

The scientists at IRB Barcelona hypothesised that, as most mutations that we get are in cytosines (C) that convert into thymines (T), most of those regions most prone to mutating over millions of years have become A/T base pairs.

To test this notion, the researchers performed a mathematical simulation of genome evolution and demonstrated that the periodicity of the sequence of the human genome and that of other eukaryotes could have arisen from the periodic rate of mutations.

"We are really pleased to provide the scientific community with this alternative explanation regarding periodicity," say Oriol Pich and Núria López-Bigas, who highlight the importance of this kind of research. "It is basic knowledge derived from curiosity-driven research that allows us to achieve a better understanding of nature".??

However, the results of the study are not only a breakthrough regarding current understanding of the human genome but they also explain how tumours acquire mutations. This knowledge is relevant for identifying mutations that are relevant for tumour development--another field of expertise of López-Bigas' group.

This study is an example of how basic research can bring about new scientific knowledge. The work has been funded by the European Research Council, through a Consolidator grant" awarded to Núria López-Bigas, by the Ministry of Science, through ERDFs, and by the Catalan Government.

###

Reference article:

Oriol Pich, Ferran Muiños, Radhakrishnan Sabarinathan, Iker Reyes-Salazar, Abel Gonzalez-Perez, Nuria Lopez-Bigas

Somatic and germline Mutation periodicity follow the orientation of the DNA minor groove around nucleosomes

Cell (2018) doi: 10.1016/j.cell.2018.10.004

Media Contact

Sònia Armengou
armengou@irbbarcelona.org
34-934-034-569

http://www.irbbarcelona.org

Sònia Armengou | EurekAlert!
Further information:
https://www.irbbarcelona.org/en/news/researchers-at-irb-barcelona-explain-the-origin-of-the-mysterious-periodicity-of-the-genome
http://dx.doi.org/10.1016/j.cell.2018.10.004

Further reports about: IRB Institute eukaryotic genomes human genome nucleosomes periodic

More articles from Life Sciences:

nachricht Study clarifies kinship of important plant group
05.08.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Human cell-based test systems for toxicity studies: Ready-to-use Toxicity Assay (hiPSC)
05.08.2020 | Fraunhofer-Institut für Biomedizinische Technik IBMT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>