Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Uncovers Potential Key to Curing Tuberculosis

05.10.2009
Researchers at Iowa State University have identified an enzyme that helps make tuberculosis resistant to a human's natural defense system. Researchers have also found a method to possibly neutralize that enzyme, which may someday lead to a cure for tuberculosis.
Tuberculosis is caused by Mycobacterium tuberculosis and is a contagious disease that is on the rise, killing 1.5 to 2 million people worldwide annually.

Reuben Peters, associate professor in the department of biochemistry, biophysics and molecular biology, is leading the team of scientists from Iowa State; the University of Illinois, Urbana-Champaign; and Cornell University, Ithaca, New York, that is attempting to find ways to minimize the disease.

The group had their research published in the Aug. 28 issue of the Journal of Biological Chemistry, and their research is also scheduled to be the cover article in an upcoming issue of the Journal of the American Chemical Society.

When most infections are introduced into humans, the body defends itself with certain cells -- called macrophage cells -- that kill the invading micro-organisms. The macrophage cells engulf and destroy these microbes, such as the Mycobacterium tuberculosis.

Peters found that the mycobacterium tuberculosis produces a defensive molecule that prevents the macrophage cells from destroying them. Peters and his team named the defensive molecule edaxadiene.

Peters' next step was to try to find molecules that bind with the edaxadiene-producing enzymes from tuberculosis and neutralize them. This makes the tuberculosis cells unable to produce edaxadiene. Without edaxadiene, tuberculosis cells would have a reduced ability to resist being killed by the macrophage cells.

Peters thinks he may have already found one.

"We have inhibitors that bind tightly to one of the enzymes that make edaxadiene in a test tube," said Peters.

Finding an inhibitor that works outside of the test tube, and in humans, and is stable, and can be ingested safely by humans, and can help kill tuberculosis is a process that may take a decade.

But Peters sees a huge reward at the end of the process.

"This is the project where I tell my students, 'If we can make even just a 1 percent impact, we can save 15,000 - 20,000 lives a year.' That is really a significant contribution towards alleviating human suffering," said Peters.

Peters' group found the molecule by comparing the genetic makeup of tuberculosis - which kills humans - to the type that kills cattle but doesn't seem to have any effect on humans - Mycobacterium bovis.

"Their genetic sequences are more than 99.9 percent identical," said Peters.

"However, whereas, tuberculosis causes disease in humans, the bovis variety is much less infectious in humans, although it does cause disease in cattle."

One of the small differences in the genetic information between the two mycobacteria may hold the key to why one infects humans while the other does not.

"The bovis mycobacterium is missing only one nucleotide in the gene for one of the edaxadiene-producing enzymes, but that turns out to be very important as it prevents that enzyme from functioning," he said.

"The critical piece for this idea is that Mycobacterium bovis doesn't make edaxadiene, and doesn't affect humans much, whereas Mycobacterium tuberculosis does make edaxadiene and is infectious in humans," Peters said.

"We think this is the big difference between the two mycobacterium, mainly because this is the only difference I know of that seems to affect their infection process," he added.

"This work presents tantalizing evidence that edaxadiene helps the tuberculosis bacterium evade the body's defenses," said Warren Jones, who oversees enzymology grants at the National Institutes of Health's National Institute of General Medical Sciences, which funded the research. "By exploring ways to block the production of this molecule, Dr. Peters is pioneering a new approach for combating this deadly pathogen."

One of the hurdles that will confront Peters in finding human cures is that the effect of edaxadiene may be specific to humans, so the normal testing process may be difficult.

The normal testing sequence involves testing in the laboratory, then on smaller animals, then larger animals, and then to humans.

Since edaxadiene may be important for the ability of tuberculosis to infect humans, rather than animals, preventing production of edaxadiene by tuberculosis may not have much effect in animals, which will be challenging for the process of bringing a cure to drugstore shelves, according to Peters.

Peters added that he is eager to take on the next challenge in the fight against tuberculosis.

Peters' research team includes Francis Mann, doctoral student; Meimei Xu, associate scientist, both in ISU's department of biochemistry, biophysics and molecular biology; Sladjana Prisic, formerly a doctoral student in ISU's department of biochemistry, biophysics and molecular biology; Huayou Hu and Robert Coates, both from the University of Illinois; and David Russell from Cornell.

Reuben Peters | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>