Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher: Study on Element Could Change Ballgame on Radioactive Waste

25.03.2014

Groundbreaking work by a team of chemists on a fringe element of the periodic table could change how the world stores radioactive waste and recycles fuel.

The element is called californium — Cf if you’re looking at the Periodic Table of Elements — and it’s what Florida State Professor Thomas Albrecht-Schmitt, the lead researcher on the project, calls “wicked stuff.”

In carefully choreographed experiments, Albrecht-Schmitt and his colleagues found that californium had amazing abilities to bond and separate other materials. They also found it was extremely resistant to radiation damage.

“It’s almost like snake oil,” he said. “It sounds almost too good to be true.”

Albrecht-Schmitt said that the discoveries could help scientists build new storage containers for radioactive waste, plus help separate radioactive fuel, which means the fuel could be recycled.

“This has real world application,” he said. “It’s not purely an academic practice.”

Albrecht-Schmitt’s work, “Unusual Structure, Bonding, and Properties in a Californium Borate,” appears published in the newest edition of Nature Chemistry.

But, running the experiments and collecting the data were not small tasks.

After years of working with the U.S. Department of Energy, Albrecht-Schmitt obtained 5 milligrams of californium costing $1.4 million, paid for through an endowment to the university in honor of retired professor Gregory Choppin.

But that tiny, expensive element has opened a whole new world of nuclear chemistry.

“We’re changing how people look at californium and how it can be used,” Albrecht-Schmitt said.

All of the experiments were conducted at Florida State, but Albrecht-Schmitt also worked with theorists and scientists from nine universities and institutes, including Oak Ridge National Laboratory, which supplied the californium.

David A. Dixon, professor of chemistry at the University of Alabama, and his graduate student, Ted Garner, provided the calculations and theory on why the californium could bond in such unique ways, while scientists at Argonne National Laboratory helped correlate the theory with the experiments. Evgeny Alekseev and Wulf Depmeier of Germany also provided an improved understanding on the atomic structure of californium.

Kathleen Haughney | newswise
Further information:
http://www.fsu.edu

Further reports about: Germany Laboratory Radioactive Waste collecting experiments structure tiny

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>