Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research team clarifies mechanics of first new cell cycle to be described in more than 20 years

31.10.2011
Understanding the endocycle has implications for agriculture and medicine

An international team of researchers led by investigators in the U.S. and Germany has shed light on the inner workings of the endocycle, a common cell cycle that fuels growth in plants, animals and some human tissues and is responsible for generating up to half of the Earth's biomass.

This discovery, led by a geneticist at Fred Hutchinson Cancer Research Center and reported Oct. 30 in Nature, leads to a new understanding of how cells grow and how rates of cell growth might be increased or decreased, which has important implications in both agriculture and medicine.

"It can be argued that this is the first completely novel cell cycle to be elucidated in more than a two decades," said Bruce Edgar, Ph.D., corresponding author of the paper and a member of the Basic Sciences Division at the Hutchinson Center, referring to the groundbreaking description of the mitotic cell cycle in the same journal in the late 1980s.

Mitosis is the division of a mother cell into two daughter cells that contain identical sets of chromosomes. Endocycling, in contrast, is a special type of cell cycle that skips mitosis. The cell replicates its DNA over and over again without ever dividing into two cells. Endocycles play a crucial role in nature because they generate very large cells in invertebrate animals and plants, as well as some human tissues, such as liver and muscle. Most cells in plants and invertebrate animals such as insects, crustaceans (such as shrimp), mollusks (such as clams, oysters and snails) grow by endocycling.

"When a cell goes through an endocycle, it doubles its DNA, and typically also doubles its size and protein content," said Edgar, also a professor at the Center for Molecular Biology and the German Cancer Research Center in Heidelberg, Germany. "Because of this, one could imagine that promoting just one extra endocycle in the cells of a crop plant or farmed shellfish might double the agricultural yield from that crop," he said. "Similarly, suppressing endocycling in an insect pest would be expected to dramatically slow the growth and reproduction of that pest."

For the research, Edgar and colleagues used genetic approaches to study a model organism – the fruit fly – which has many endocycling cells. The researchers primarily studied the saliva glands, as the cells in these glands endoreplicate about 10 times during the fly's life cycle, which increases the amount of DNA – and the corresponding size of each cell – more than 1,000-fold.

The researchers studied genetic transcription factors and enzymes that drive endocycling and DNA replication through a series of choreographed pulses. Specifically, they found that a transcription factor called E2F is temporarily destroyed during DNA replication by an enzyme called CRL4. Function of E2F is then restored after DNA replication and the cycle repeats itself.

"Together, E2F and CRL4 function a molecular oscillator," Edgar said. "An analogy might be a water wheel, which is driven by the filling and emptying of its buckets. E2F would be analogous to the water, which first accumulates in a bucket, and then DNA replication would be analogous to the rotation of the wheel. CRL4 destroys the accumulated E2F, which is analogous to the bucket emptying so the process can repeat," Edgar said.

Edgar and colleagues also found that the rate of cell growth controls the rate of E2F accumulation and thereby controls how rapidly cells can replicate and re-replicate their DNA. "In the water wheel analogy, the more water that flows into the wheel the faster it rotates. Similarly, in the endocycle, the faster E2F is produced, the faster the endocycle spins and the bigger the cell gets. We think this property probably applies to all growing cells," he said.

Although humans don't have many cells that endocycle, several important examples that do include trophoblast giant cells in the placenta, which support fetal development. "If they don't endocycle, no baby," Edgar said. Heart muscle cells also grow by endocycling, as do certain types of blood cells. Some diseases that arise from a malfunction of these cells could involve defects in endocycling, and such diseases might be treated by drugs that target the proteins that comprise the endocycle oscillator.

"Generally, the gene products and principles used by the endocycle oscillator are employed to control DNA replication in virtually all cells," Edgar said. "Because of this, our findings are potentially relevant to many diseases that involve abnormal cell proliferation. These include all cancers and some degenerative diseases."

In addition to researchers at the Hutchinson Center and the German Cancer Research Center, collaborators included researchers from the University of Heidelberg, University of Washington, University of North Carolina at Chapel Hill, University of Zurich and University of Calgary.

Funding for the research came from the National Institutes of Health, the National Institute for General Medical Sciences, the National Science Foundation, the German Academic Exchange Service, the German Cancer Research Center and the Canadian Institutes of Health Research.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit fhcrc.org.

Kristen Woodward | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>