Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research team at the CRTD identifies cells that form new bone during Axolotl finger regeneration

22.11.2016

At the DFG-Center for Regenerative Therapies Dresden (CRTD) - Cluster of Excellence at the TU Dresden, a team of researchers lead by Joshua Currie, PhD, and Elly Tanaka, PhD, used live imaging during axolotl regeneration to identify the unique migration kinetics of various connective tissue cell types which choreograph their fate and tissue contribution during regeneration. The results were published in the scientific journal Developmental Cell on November 21, 2016.

The axolotl is a champion of regeneration, with the ability to completely regenerate the limb skeleton and heal wounds without forming scars. Understanding how this process happens holds promise to improve the outcome of bone regeneration after fracture as well reduce scaring during wound healing.


Brainbow Labeling

© Joshua Currie, CRTD


Joshua Currie and Elly Tanaka

© CRTD

After amputation of the axolotl limb, cells are recruited to the site of injury and build a mass of cells, called the blastema, which will build the lost portions of the limb. An outstanding question has been “Where exactly do the cells for the blastema come from?”

Using a multi-color labeling technique and live imaging of regeneration in the axolotl fingertip, Currie et al. found that cells surrounding the bone and cells beneath the skin move into the wound site to build the lost skeleton of the fingertip.

Finally, the team identified a growth factor, PDGF-BB (Platelet-derived growth factor BB), that was essential for activating cells to migrate to the site of injury and form the regenerative blastema.

“In the future it will be important to understand how PDGF-BB, a growth factor also found in humans, is able to activate cells to migrate and if human wounds could benefit from treatment with PDGF-BB to recruit more cells to aid in regeneration and scar free healing,” says the study’s first author, Joshua Currie, PhD.

Since 2011, Joshua Currie, PhD, has worked as a Postdoctoral Fellow at the CRTD. In 2011 he completed his Doctor of Philosophy at the University of North Carolina (Chapel Hill, North Carolina, USA). Before, he worked as a Research Assistant at Vanderbilt University (Nashville, Tennessee, USA).

Elly Tanaka, PhD, Professor of Animal Models of Regeneration at the Technische Universität Dresden, in the DFG Research Center, Cluster of Excellence for Regenerative Therapies (CRTD) from 2008-2016. Since September 2016, Senior Scientist at the Research Institute of Molecular Pathology (IMP) in Vienna, Austria.

Publication:
“Live Imaging of Axolotl Digit Regeneration Reveals Spatiotemporal Choreography of Diverse Connective Tissue Progenitor Pools”
DOI: http://dx.doi.org/10.1016/j.devcel.2016.10.013

Related publications:
Prayag Murawala, Elly M. Tanaka, Joshua D. Currie. ”Regeneration: The Ultimate Example of Wound Healing,” Seminars in Cell and Developmental Biology, 23(9), 954-962, 2012.

Tanaka EM. The Molecular and Cellular Choreography of Appendage Regeneration. Cell. 2016 Jun 16;165(7):1598-608. DOI: 10.1016/j.cell.2016.05.038.

Press Contact:
Franziska Clauß, M.A.
Press Officer
Phone: +49 351 458 82065
E-Mail: franziska.clauss@crt-dresden.de

Franziska Clauß | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>