Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows dolphin by-catch includes genetic relatives

16.12.2010
Genetics of net entanglement has implications for small cetacean conservation

Dolphins along coast of Argentina could experience a significant loss of genetic diversity because some of the animals that accidently die when tangled in fishing nets are related.

According to a new genetic analysis published this week in the journal PLoS One, Franciscana dolphins that die as by-catch are more than a collection of random individuals: many are most likely mother-offspring pairs. This result, which suggests reduced genetic diversity and reproductive potential, could have significant implications for the conservation of small marine mammals.

"It has always been assumed that dolphins could be entangled in fishing nets with family members, but this is one of the very few analyses to demonstrate this result," says Martin Mendez, a postdoctoral researcher at the Sackler Institute for Comparative Genomics at the American Museum of Natural History who led the study. "When family members die as by-catch, a portion of genetic identity of a species is lost, and two important demographic elements of a population are removed: a reproductive female and the next generation."

Franciscana dolphins (Pontoporia blainvillei) have a range that hugs the Atlantic coast of Brazil, Uruguay, and Argentina. This species is one of the world's smallest cetaceans and is a member of the river dolphin family, although it actually lives in coastal waters and estuaries. Females probably begin to have calves between two and five years and probably stay with each calf for some time. Because researchers estimate that between two and five percent of the Fransiscana population near Argentina becomes entangled in fishing nets from small-scale operations each year, the by-catch death rate has a significant impact on the population numbers. By-catch is the biggest impact to small cetacean populations world-wide.

"The by-catch in lost Franciscana dolphins is comparable to what the population produces in terms of offspring," says Pablo Bordino of Fundación Aquamarina in Buenos Aires, Argentina. "To know that Franciscana family groups are being caught in certain areas allows us to focus our conservation strategies to try to avoid this serious impact. The use of genetic information also gives us a new window into the ecology of this species."

In the current study, Mendez, Bordino, and colleagues looked at over 250 by-catch deaths among Franciscana dolphins over 10 years and found that most of the animals entangled in groups were genetic relatives.

"Like other highly cognitive species, the Franciscana dolphin likely relies on vital bonds among related animals to survive in a challenging environment," says Howard Rosenbaum, Director of the Wildlife Conservation Society's Ocean Giants Program. "Our genetic findings confirm that these bonds—especially between mothers and calves—make the Franciscana particularly vulnerable to bycatch mortality, a significant threat to the species in some areas of its range."

"People assume that by-catch is random, but there are related animals in the sample," says Mendez. "This analysis combining high-resolution genetic data would not have been possible a decade ago. We can now use these data to recover essential biological and ecological information, and translate that into management or conservation action."

In addition to Mendez, Bordino, and Rosenbaum , the authors include Randall S. Wells of the Chicago Zoological Society in Sarasota, Florida and Andrew Stamper of Walt Disney World Resorts at Lake Buena Vista, Florida. The research was funded by Fundación Aquamarina, Chicago Zoological Society, Ecohealth Alliance, Disney Wildlife Conservation Fund, and the Sackler Institute for Comparative Genomics at the American Museum of Natural History.

Kristin Elise Phillips | EurekAlert!
Further information:
http://www.amnh.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>