Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research sheds light on how immune system's 'first responders' target infection

28.02.2012
University of Texas Medical Branch at Galveston researchers have discovered previously unsuspected aspects of the guidance system used by the body's first line of defense against infection.

The new work focuses on the regulation of immune response by two forms of the signaling molecule IL-8, as well as IL-8's interaction with cell-surface molecules called glycosaminoglycans (or GAGs for short).

Infected or injured tissues release IL-8 to attract bacteria- and virus-killing white blood cells known as neutrophils, a process known as "recruitment." As IL-8 proteins disperse from the infection site, they anchor themselves to GAGs to provide "signposts" that help neutrophils find their target.

"Neutrophils are killing machines but they're also blind, so they shoot at anything and everything — to fight infection effectively and minimize collateral tissue damage, they have to be precisely directed and activated," said UTMB associate professor Krishna Rajarathnam, lead author of a paper on the study in the Journal of Leukocyte Biology. "This process of spatial and temporal control is quite complex, but we've gained a fundamental insight into a very basic mechanism."

That mechanism is based on IL-8's existence as both a single unit (a monomer) and a pair (a dimer). In nature, during the course of onset and resolution of infection, IL-8 could exist as a monomer, dimer, or both.

To study how this process affects immune response, Rajarathnam and his colleagues created two forms of IL-8 not found in nature: one made of monomers unable to join into dimers, and the other of dimers unable to split into monomers. They then carried out a series of mouse experiments with monomers, dimers and "wild-type" (normal) IL-8 in which they found that differing concentrations of IL-8 monomer and dimer clearly influenced the strength of neutrophil recruitment.

In addition, drawing on earlier work, they determined that these effects varied depending on the location of the infection — leading them to the conclusion that IL-8 monomers and dimers interact differently with GAGs in different body tissues.

"Our previous experiments involved IL-8 in the lung, and in this study we looked at what happened if we injected IL-8 in the peritoneum, the abdominal wall," Rajarathnam said. "In the lung, the neutrophil activity we saw for wild-type IL-8 was between the monomer alone or the dimer alone, but in the peritoneum the wild type actually produced greater activity. It was synergistic, meaning that in the wild type the monomer and the dimer interact cooperatively to facilitate neutrophil recruitment."

Such unpredictable results are to be expected when investigating a phenomenon as complex as immune response, according to Rajarathnam.

"I believe we have discovered a crucial and fundamental mechanism that regulates neutrophil function," Rajarathnam said. "Our future goal is to characterize the distinct activities of monomer and dimer to see if we can 'control' runaway inflammation and related neutrophil-induced tissue damage in diseases such as sepsis."

Other authors of the paper include graduate student Pavani Gangavarapu, assistant professor Lavanaya Rajagopalan, instructor Deepthi Kolli, assistant professor Antonieta Guerrero-Plata and Dr. Roberto Garofalo.

"This was a truly translational project, bringing together researchers from both basic and clinical sciences to study the molecular mechanisms underlying disease," Rajarathnam said.

This work was supported by a grant from the National Institutes of Health.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Physics: Not everything is where it seems to be

15.10.2018 | Physics and Astronomy

Microfluidic molecular exchanger helps control therapeutic cell manufacturing

15.10.2018 | Life Sciences

Link between Gut Flora and Multiple Sclerosis Discovered

15.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>