Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research sheds light on how immune system's 'first responders' target infection

28.02.2012
University of Texas Medical Branch at Galveston researchers have discovered previously unsuspected aspects of the guidance system used by the body's first line of defense against infection.

The new work focuses on the regulation of immune response by two forms of the signaling molecule IL-8, as well as IL-8's interaction with cell-surface molecules called glycosaminoglycans (or GAGs for short).

Infected or injured tissues release IL-8 to attract bacteria- and virus-killing white blood cells known as neutrophils, a process known as "recruitment." As IL-8 proteins disperse from the infection site, they anchor themselves to GAGs to provide "signposts" that help neutrophils find their target.

"Neutrophils are killing machines but they're also blind, so they shoot at anything and everything — to fight infection effectively and minimize collateral tissue damage, they have to be precisely directed and activated," said UTMB associate professor Krishna Rajarathnam, lead author of a paper on the study in the Journal of Leukocyte Biology. "This process of spatial and temporal control is quite complex, but we've gained a fundamental insight into a very basic mechanism."

That mechanism is based on IL-8's existence as both a single unit (a monomer) and a pair (a dimer). In nature, during the course of onset and resolution of infection, IL-8 could exist as a monomer, dimer, or both.

To study how this process affects immune response, Rajarathnam and his colleagues created two forms of IL-8 not found in nature: one made of monomers unable to join into dimers, and the other of dimers unable to split into monomers. They then carried out a series of mouse experiments with monomers, dimers and "wild-type" (normal) IL-8 in which they found that differing concentrations of IL-8 monomer and dimer clearly influenced the strength of neutrophil recruitment.

In addition, drawing on earlier work, they determined that these effects varied depending on the location of the infection — leading them to the conclusion that IL-8 monomers and dimers interact differently with GAGs in different body tissues.

"Our previous experiments involved IL-8 in the lung, and in this study we looked at what happened if we injected IL-8 in the peritoneum, the abdominal wall," Rajarathnam said. "In the lung, the neutrophil activity we saw for wild-type IL-8 was between the monomer alone or the dimer alone, but in the peritoneum the wild type actually produced greater activity. It was synergistic, meaning that in the wild type the monomer and the dimer interact cooperatively to facilitate neutrophil recruitment."

Such unpredictable results are to be expected when investigating a phenomenon as complex as immune response, according to Rajarathnam.

"I believe we have discovered a crucial and fundamental mechanism that regulates neutrophil function," Rajarathnam said. "Our future goal is to characterize the distinct activities of monomer and dimer to see if we can 'control' runaway inflammation and related neutrophil-induced tissue damage in diseases such as sepsis."

Other authors of the paper include graduate student Pavani Gangavarapu, assistant professor Lavanaya Rajagopalan, instructor Deepthi Kolli, assistant professor Antonieta Guerrero-Plata and Dr. Roberto Garofalo.

"This was a truly translational project, bringing together researchers from both basic and clinical sciences to study the molecular mechanisms underlying disease," Rajarathnam said.

This work was supported by a grant from the National Institutes of Health.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Happy hour for time-resolved crystallography
17.09.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Too much of a good thing: overactive immune cells trigger inflammation
16.09.2019 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>