Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals novel transport mechanism for large ribonucleoproteins

11.05.2012
Ribonucleoprotein granules exit the nucleus via a budding mechanism akin to herpes-type viruses

The movement of genetic materials, such as RNA and ribosomes, from the nucleus to the cytoplasm is a critical component in a cell's ability to make the proteins necessary for essential biological functions. Until now, it was believed the nuclear pore complex was the sole pathway between the cell nucleus and cytoplasm for these materials.

New evidence published in Cell by Vivian Budnik, PhD, Melissa J. Moore, PhD, and colleagues at the University of Massachusetts Medical School, reveals a novel budding mechanism, similar to the process used by some viruses, capable of exporting large ribonucleoprotein particles from the nucleus to the cytoplasm.

"The findings in this paper fundamentally change our understanding of mRNA export from the nucleus," said Moore, the Eleanor Eustis Farrington Chair in Cancer Research, Howard Hughes Medical Institute Investigator and professor of biochemistry & molecular pharmacology. "In addition to the canonical pathway of mRNA export going through the nuclear pore complex, we now know that large RNA transport granules can be assembled in the cell nucleus and exported via a budding mechanism previously thought to only be used by the herpes virus."

This study has helped to unravel how RNAs support the development of the post-synaptic apparatus, said Budnik, professor of neurobiology. "It provides new evidence about communication between the nucleus and cytoplasm that have implications for diseases that affect the nuclear envelope such as muscular dystrophies and herpes-type infections such as shingles."

Found along the surface of the nuclear envelope, nuclear pores are small openings that allow certain molecules, such as messenger RNA, transfer RNA and ribosomes, to be transported across this physical barrier that separates a cell's nucleus and DNA from its cytoplasm. Once in the cytoplasm, these genetic materials are the factories and blueprints used by the cell to create proteins. In some cells, these RNAs are bound together in large clusters known as transport granules, which are carried to precise locations within a cell to synthetize specific proteins needed at that site.

"When we look at these transport granules to scale, we see that they're too large to pass through the nuclear pore complex," said Moore. "An open question has been, where are these transport granules first assembled? And if it's in the nucleus, how do they make their way to the cytoplasm?"

Working to understand how synapses develop and communicate with neighboring muscle cells, Budnik discovered a new method whereby these large granules, in the form of ribonucleoprotein (RNP) particles, were transported across the nuclear envelope. Specifically, Budnik and colleagues were investigating how the Wnt/wingless (Wg) protein secreted by the motor neuron initiates a reaction involving the DFrizzled2 (DFz2) receptor on the nearby muscle cell. This interaction between Wg and DFz2 eventually leads a portion of the DFz2 into the muscle cell nucleus where it accumulates around large RNP granules containing messenger RNAs. Once they reach their final destination in the muscle cell cytoplasm, these RNAs are responsible for making the synaptic proteins critical to increasing the size of the junction between motor neuron and muscle cell.

It was while investigating this process that Budnik and colleagues witnessed these large granules exiting the muscle cell's nucleus in an unusual manner. "What was so surprising," said Sean D. Speese, PhD, former postdoctoral fellow in the Budnik lab and currently research assistant professor at Oregon Health and Sciences University, "was that the nuclear DFz2-large-RNPs utilized a novel mechanism for exiting the nucleus, which appeared independent of the nuclear pores and resembled the egress of herpes-type viruses from the nuclear envelope."

During infection, herpes virus particles are assembled in the nucleus. But they are much too large to exit through the nuclear pores. Instead, they bud through the double membranes of the nuclear envelope. To exit the nucleus, the protein shell surrounding the virus disrupts the lamina, a fibrous component located beneath the inner nuclear membrane which, among other properties, anchors the nuclear pore complexes to the nuclear membranes. This allows the virus to bud into the space between the inner and the outer nuclear membrane, becoming enveloped by the inner nuclear membrane. Fusion of this coat with the outer nuclear membrane then allows the virus to be released into the cytoplasm.

"Similarly, we found that DFz2C-RNPs used the same mechanism and viral machinery to reach the cytoplasm," said Speese. Once inside the muscle cell nucleus, the DFz2C RNPs recruit proteins, such as kinase C, to disrupt the lamins, which allows them to bud into the inner nuclear membrane. "In both cases, this process was dependent on an A-type lamina protein, which in humans is associated with a number of muscular dystrophies and early aging syndromes when mutated," said Speese.

Collectively, these discoveries have significant ramifications on our understanding of multiple biological questions including RNA transport, synapse development and the herpes virus, which causes chicken pox and shingles and Epstein–Barr virus, which causes mononucleosis.

About the University of Massachusetts Medical School
The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $270 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the Medical School is to advance the health and well-being of the people of the commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care. For more information, visit www.umassmed.edu

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Life Sciences:

nachricht A study demonstrates that p38 protein regulates the formation of new blood vessels
17.07.2019 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht For bacteria, the neighbors co-determine which cell dies first: The physiology of survival
17.07.2019 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>