Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research reveals how protein protects cells from HIV infection

13.02.2012
Finding offers potential new drug targets aimed at slowing progression of disease

A novel discovery by researchers at NYU Langone Medical Center and colleagues reveals a mechanism by which the immune system tries to halt the spread of HIV. Harnessing this mechanism may open up new paths for therapeutic research aimed at slowing the virus' progression to AIDS. The study appears online ahead of print today in Nature Immunology.

"A lot of research on viruses, especially HIV, is aimed at trying to understand what the body's mechanisms of resistance are and then to understand how the virus has gotten around these mechanisms," said co-lead investigator Nathaniel R. Landau, PhD, a professor of microbiology at the Joan and Joel Smilow Research Center at NYU School of Medicine.

The research focused on a protein called SAMHD1. Recent studies have found that immune cells, called dendritic cells, containing the protein are resistant to infection by HIV. Since the discovery, scientists have sought to understand how SAMHD1 works to protect these cells, with hopes that science might find a way to synthetically apply that protection to other cells.

Dr. Landau and his team are now able to provide an answer:

When a virus, like HIV, infects a cell, it hijacks the cell's molecular material to replicate. That molecular material is in the form of deoxynucleotide triphosphates (dNTPs), which are the building blocks for DNA. Once the virus replicates, the resulting DNA molecule contains all the genes of the virus and instructs the cell to make more virus.

Researchers wanted to understand how cells containing the SAMHD1 protein are protected from such hijacking. They found that SAMHD1 protects the cell from viruses by destroying the pool of dNTPs, leaving the virus without any building blocks to make its genetic information – a process researchers call nucleotide pool depletion. "SAMHD1 essentially starves the virus," Dr. Landau said. "The virus enters the cell and then nothing happens. It has nothing to build and replicate with, so no DNA is made."

As a result, the most common form of HIV does not readily infect these cells. Instead, the virus has evolved to replicate mainly in a different kind of cell, called CD4 T-cells, which do not contain SAMHD1 and therefore have a healthy pool of dNTPs. Dr. Landau explained that the virus has evolved in such a way that it may deliberately avoid trying to infect immune cells with SAMHD1 to avoid alerting the greater immune system to activate a variety of antiviral mechanisms to attack the virus. Viruses that are related to HIV, like HIV-2 and SIV, have developed a protein called viral protein X (VPX) that directly attacks SAMHD1. This allows the virus to infect dendritic cells, an important type of immune cell.

"Viruses are remarkably clever about evading our immune defenses," Dr. Landau said. "They can evolve quickly and have developed ways to get around the systems we naturally have in place to protect us. It's a bit of evolutionary warfare and the viruses, unfortunately, usually win. We want to understand how the enemy fights so that we can outsmart it in the end."

Understanding the mechanism by which SAMHD1 provides protection to cells may provide a new idea about how to stop or slow the virus' ability to spread, Dr. Landau explained. Potential future research efforts, for example, might focus on finding a way to increase the amount of SAMHD1 in cells where it does not exist, or to reduce the amount of dNTPs in cells vulnerable to infection.

"Over the past few years, a number of these natural resistance mechanisms have been identified, specifically in HIV, but some have potential applications to other viruses, as well," he said. "This is a very exciting time in HIV research. Many of the virus' secrets are being revealed through molecular biology, and we're learning a tremendous amount about how our immune system works through the study of HIV."

Funded in part by the National Institutes of Health and the American Foundation for AIDS Research, the study was conducted in collaboration with researchers at several institutions, including the University of Rochester Medical Center and The Cochin Institute, in Paris.

About NYU School of Medicine:

NYU School of Medicine is one of the nation's preeminent academic institutions dedicated to achieving world class medical educational excellence. For 170 years, NYU School of Medicine has trained thousands of physicians and scientists who have helped to shape the course of medical history and enrich the lives of countless people. An integral part of NYU Langone Medical Center, the School of Medicine at its core is committed to improving the human condition through medical education, scientific research and direct patient care. The School also maintains academic affiliations with area hospitals, including Bellevue Hospital, one of the nation's finest municipal hospitals where its students, residents and faculty provide the clinical and emergency care to New York City's diverse population, which enhances the scope and quality of their medical education and training. Additional information about the NYU School of Medicine is available at http://school.med.nyu.edu/.

Jessica Guenzel | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>