Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Reveals Lipid’s Unexpected Role in Triggering Death of Brain Cells

16.11.2009
The lipid that accumulates in brain cells of individuals with an inherited enzyme disorder also drives the cell death that is a hallmark of the disease, according to new research led by St. Jude Children’s Research Hospital investigators.

The work provides the first evidence that a lipid can initiate the suicidal, or apoptotic, response in cells. The findings involve a lipid called GM1-ganglioside. Lipids are fat-like molecules. GM1 builds up with devastating results in the brain cells of patients with GM1-gangliosidosis because they lack the enzyme required to break down that molecule.

Working in mice missing this key enzyme, researchers reported new details of how GM1 accumulation inside certain structures in brain cells disrupts their internal calcium balance. This imbalance ultimately leads to the programmed cell death known as apoptosis. The work appears in the November 13 online edition of Molecular Cell.

“The finding is essential for understanding the causes of progressive loss of brain cells, characteristic of this disease,” said Alessandra d’Azzo, Ph.D., of St. Jude Genetics and Tumor Cell Biology. She is the senior author of the report and holds the Jewelers for Children Endowed Chair in Genetics and Gene Therapy. The work also provides hints for a strategy to intervene in the disease process.

The research led d’Azzo and her colleagues to propose that the death of brain cells and neurodegeneration that strikes GM1-gangliosidosis patients is a two-step process. The investigators demonstrated that blocking the first step in this process prevented cells from self-destructing, which was not the case when just the second step was inhibited. They predicted the discovery might have important implications for developing new treatments for this catastrophic disease.

The findings also have implications for scientists studying other aspects of the cross-talk between intracellular compartments, involving calcium signaling.

GM1-gangliosidosis is a lysosomal storage disorder in which an essential enzyme in the lysosomes is defective and cannot break down GM1. Lysosomes serve as the cell’s digestive and recycling centers, stripping proteins, fats and other molecules down to their components so they can be used to assemble new molecules. Symptoms develop in childhood, in some cases shortly after birth, and include mental retardation, seizures and other problems. The outlook for patients remains bleak.

Normally, GM1 is found in the cell membrane. But previous work from d’Azzo’s laboratory has shown that in patients with GM1-gangliosidosis, this lipid accumulates in other locations within the cell, including the membrane of the endoplasmic reticulum (ER). The ER is the structure where proteins are produced. GM1 accumulation in the ER membrane depletes the ER’s calcium supply, disrupting the key protein-folding process. The disruption prompts the ER to target the cell for destruction.

In the current study, investigators extended their search for answers about the neurodegeneration in GM1-gangliosidosis to the mitochondria, another intracellular compartment. Some of the mitochondria are connected to the ER via the so-called mitochondria-associated ER membranes or MAMs. MAMs function like bridges, providing a route for calcium to move out of the ER and into the mitochondria. Researchers focused on the mitochondria because one of their cellular duties is to soak up and store excess intracellular calcium, including calcium from the ER.

Using a variety of techniques, researchers identified a region within MAMs where GM1 not only accumulates but sets the stage for step two of the calcium imbalance that triggers cellular suicide. Investigators reported that in healthy cells these regions, known as glycosphingolipid-enriched microdomains, or GEMs, include tiny amounts of GM1. But in mice lacking the enzyme to break down GM1, large amounts of this lipid build up in the GEMs, said Ida Annunziata, Ph.D., a postdoctoral fellow in d’Azzo’s laboratory. She shares first authorship of the paper with Renata Sano, Ph.D., a former postdoctoral fellow in d’Azzo’s laboratory, currently at the Burnham Institute for Medical Research, La Jolla, Calif.

Investigators found evidence that the build-up of GM1 changes the composition of the contact sites linking ER and mitochondria and increases their number. Within the GEMs of diseased mice, researchers found elevated levels of three proteins that play important roles in transporting calcium from the ER to the mitochondria.

Those proteins include the phosphorylated form of IP3 receptor-1 (IP3R-1), which is important for the release of calcium from the ER. Not only is there more IP3R-1, but researchers reported that the protein physically interacts with GM1. d’Azzo suggested that the interaction might promote clustering of the IP3R-1 on the ER side of the GEMs, but the structural effects of accumulated GM1 on this protein must still be determined.

“It is becoming more and more apparent that intracellular organelles, including the ER, cross-talk with each other,” d’Azzo said. “Here we show that in GM1-gangliosidosis, build-up of GM1 at the MAMs/GEMs alters the normal cross-talk between the ER and mitochondria.”

For patients with GM1-gangliosidosis, investigators now believe problems begin when GM1 builds-up in the ER, exhausting its calcium supply and disrupting protein folding.

The second hit comes as the mitochondria struggles and eventually fails to cope with the calcium streaming in from the ER across the GEMs. Overloaded with calcium, the mitochondrial membrane becomes leaky, and a pore, known as the permeability transition pore (PTP), opens. Eventually the mitochondria release specialized proteins, like cytochrome c and other factors, triggering a biochemical cascade that ends in the destruction of both the mitochondria and the cell itself.

The other authors of this paper include Annette Patterson, Simon Moshiach, Elida Gomero and Joseph Opferman, all of St. Jude; and Michael Forte, of Vollum Institute, Oregon Health and Science University, Portland, Ore.

This work is supported in part by the National Institutes of Health, the Lysosomal Storage Disease Consortium, the Assisi Foundation of Memphis and ALSAC.

St. Jude Children's Research Hospital
St. Jude Children's Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tenn., St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fundraising organization. For more information, please visit www.stjude.org.

Carrie Strehlau | Newswise Science News
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>