Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research reveals more about how the brain processes facial expressions and emotions

16.10.2012
Brain feedback from facial mimicry used to interpret ambiguous smiles, shape relationships of power and status

Research released today helps reveal how human and primate brains process and interpret facial expressions, and the role of facial mimicry in everything from deciphering an unclear smile to establishing relationships of power and status.

The findings were presented at Neuroscience 2012, the annual meeting of the Society for Neuroscience and the world’s largest source of emerging news about brain science and health.

Facial mimicry — a social behavior in which the observer automatically activates the same facial muscles as the person she is imitating — plays a role in learning, understanding, and rapport. Mimicry can activate muscles that control both smiles and frowns, and evoke their corresponding emotions, positive and negative. The studies reveal new roles of facial mimicry and some of its underlying brain circuitry.

Today’s new findings show that:
Special brains cells dubbed “eye cells” activate in the amygdala of a monkey looking into the eyes of another monkey, even as the monkey mimics the expressions of its counterpart (Katalin Gothard, MD, PhD, abstract 402.02, see attached summary).

Social status and self-perceptions of power affect facial mimicry, such that powerful individuals suppress their smile mimicry towards other high-status people, while powerless individuals mimic everyone’s smile (Evan Carr, BS, abstract 402.11, see attached summary).

Brain imaging studies in monkeys have revealed the specific roles of different regions of the brain in understanding facial identity and emotional expression, including one brain region previously identified for its role in vocal processing (Shih-pi Ku, PhD, abstract 263.22, see attached summary).

Subconscious facial mimicry plays a strong role in interpreting the meaning of ambiguous smiles (Sebastian Korb, PhD, abstract 402.23, see attached summary).

Another recent finding discussed shows that:


Early difficulties in interactions between parents and infants with cleft lip appear to have a neurological basis, as change in a baby’s facial structure can disrupt the way adult brains react to a child (Christine Parsons, PhD, see attached speaker’s summary).

“Today’s findings highlight the role of facial expressions in communication and social behavior,” said press conference moderator Ruben Gur, PhD, of the University of Pennsylvania, an expert on behavior and brain function. “Brain circuits that interpret the face appear ever more specialized, from primate ‘eye cells,’ to brain feedback that enables us to discern meaning through facial mimicry.” This research was supported by national funding agencies, such as the National Institutes of Health, as well as private and philanthropic organizations. Click here to view the full press release.

Kat Snodgrass | EurekAlert!
Further information:
http://www.sfn.org

More articles from Life Sciences:

nachricht A Varied Menu
25.03.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Key evidence associating hydrophobicity with effective acid catalysis
25.03.2019 | Tokyo Metropolitan University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>