Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals a new direction for halting the citrus greening epidemic

27.03.2018

New clues to how the bacteria associated with citrus greening infect the only insect that carries them could lead to a way to block the microbes' spread from tree to tree, according to a study in Infection and Immunity by scientists at Boyce Thompson Institute (BTI) and the Agricultural Research Service (ARS).

Citrus greening, also known as huanglongbing, is a serious disease dramatically affecting citrus production all over the world. Trees with this disease are unable to get enough nutrients from the soil, their leaves turn yellow, young twigs die back, and fruit remains small, green and unsuitable for sale. After only a few years the trees die completely.


Diaphorina citri nymph feeding on a citrus leaf.

Credit: Marina Mann

These symptoms are associated with a bacterium called 'Candidatus Liberibacter asiaticus,' referred to as CLas for short, which is spread from tree to tree by its tiny insect vector, the Asian citrus psyllid (Diaphorina citri). Today, citrus greening has been detected in every citrus-producing county in Florida, throughout the southern citrus growing states and in isolated spots of southern California. Growers have tried many strategies to combat the disease, but none have been effective enough or long-lasting.

Researchers at Boyce Thompson Institute (BTI) and in Emerging Pests and Pathogens Research Laboratory at the USDA- Agricultural Research Service in Ithaca, NY, are among many investigators working to find a solution, and their recent publication sheds light on an important strategy for controlling the spread of CLas. Published in Infection and Immunity, they present a possible mechanism for how CLas can infect its psyllid vector.

The bacteria are sucked up when a psyllid feeds on an infected tree, replicate inside the insect, and then infect healthy trees as the psyllid feeds throughout a grove. Without hitching a ride in the insect, CLas would not be able to infect new trees, and thus no new trees would succumb to citrus greening disease. With the long-term goal to disrupt this interaction, researchers in the Heck lab have focused on an important point: not all psyllids are equal in their ability to spread CLas.

"Research has shown over and over that nymphs are able to acquire the bacteria from the plant much better than adults," said Marina Mann, BTI researcher and first-author on the study. "Answering why is one of our next steps because it may give us a way to control the psyllid's ability to spread the bacteria."

To effectively be spread by psyllids, CLas must pass through the cells lining the insect's gut. The lab, under the direction of BTI professor and ARS researcher Michelle Heck, has previously shown that the gut cells of adult ACP experience a severe stress response when infected by CLas. The cell nuclei become fragmented, and some cells will even undergo apoptosis - auto-induced cell suicide. In their recent publication, the researchers report a much different response in the young psyllid nymphs.

"When we looked at nymphs, we found that their nuclei rarely reached the same level of disruption we saw in adults, and thus appeared resistant to the effects of exposure to CLas," said Mann.

The next step will be to identify the mechanism for resistance in the nymphs so that it might be reversed to halt the spread of CLas. An important clue lies in how psyllids interact with symbiotic bacteria in its gut, especially Wolbachia pipientis.

Many insects are hosts for Wolbachia, and often depend on these bacteria for important benefits - much like how human health depends on gut bacteria. In their study, Mann and Heck show that in psyllid nymphs, Wolbachia and CLas reside within the same cells. To accommodate the beneficial bacteria, the nymph gut cells may actively avoid cell suicide, which, the authors hypothesize, might help CLas get in and multiply at the same time.

Their theory is supported by their discovery that the levels of CLas in psyllid nymphs are strongly correlated with the levels of W. pipientis, meaning that the nymphs that let more Wolbachia in have also let in more CLas. Although this link remains to be tested directly, understanding its mechanism could yield an important target for disrupting the psyllid-CLas interaction.

"We now have a foothold in our understanding of a molecular difference between nymph and adult psyllids in their guts, which CLas exploits to gain entry into the insect vector," said Heck, who is lead investigator for the project. "This is important to our ability to develop new ways to block transmission by insects in the grove."

"Citrus growers will be in a much better situation in terms of disease control and saving the U.S. citrus industry," said Dan Dreyer, Chairman of the California Citrus Research Board, which funds this and other research aimed at developing a management strategy for citrus greening.

"There are still many unanswered questions about CLas, how it is acquired and transmitted via the Asian citrus psyllid and how it causes the disease," continued Dreyer. "The more we learn about CLas and its vector, the closer we will get to moving citrus production past the threat of citrus greening."

###

Research reported in this news release was supported by the California Citrus Research Board, grant numbers 5300-155 and 5300-163, and the USDA National Institute of Food and Agriculture, grant number 2015-70016-23028.

Alexa M. Schmitz is the Science Editorial Associate for Boyce Thompson Institute.

Media Relations Contact:Alexa M. Schmitz (ams629@cornell.edu) or Keith Hannon (kch95@cornell.edu).

Communications Office 607-288-2578 Boyce Thompson Institute 533 Tower Road Ithaca, New York 14853 USA

To learn more about Boyce Thompson Institute (BTI) research, visit the BTI website.

Connect online with BTI at Facebook and Twitter.

About Boyce Thompson Institute: Boyce Thompson Institute is a premier life sciences research institution located in Ithaca, New York on the Cornell University campus. BTI scientists conduct investigations into fundamental plant and life sciences research with the goals of increasing food security, improving environmental sustainability in agriculture and making basic discoveries that will enhance human health. Throughout this work, BTI is committed to inspiring and educating students and to providing advanced training for the next generation of scientists. For more information, visit btiscience.org.

Media Contact

Alexa M. Schmitz
ams629@cornell.edu
607-288-2578

 @BTIscience

http://bti.cornell.edu 

Alexa M. Schmitz | idw - Informationsdienst Wissenschaft
Further information:
https://btiscience.org/explore-bti/news/post/new-direction-for-halting-citrus-greening-epidemic/
http://dx.doi.org/10.1128/IAI.00889-17

More articles from Life Sciences:

nachricht The hidden structure of the periodic system
17.06.2019 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>