Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals a new direction for halting the citrus greening epidemic

27.03.2018

New clues to how the bacteria associated with citrus greening infect the only insect that carries them could lead to a way to block the microbes' spread from tree to tree, according to a study in Infection and Immunity by scientists at Boyce Thompson Institute (BTI) and the Agricultural Research Service (ARS).

Citrus greening, also known as huanglongbing, is a serious disease dramatically affecting citrus production all over the world. Trees with this disease are unable to get enough nutrients from the soil, their leaves turn yellow, young twigs die back, and fruit remains small, green and unsuitable for sale. After only a few years the trees die completely.


Diaphorina citri nymph feeding on a citrus leaf.

Credit: Marina Mann

These symptoms are associated with a bacterium called 'Candidatus Liberibacter asiaticus,' referred to as CLas for short, which is spread from tree to tree by its tiny insect vector, the Asian citrus psyllid (Diaphorina citri). Today, citrus greening has been detected in every citrus-producing county in Florida, throughout the southern citrus growing states and in isolated spots of southern California. Growers have tried many strategies to combat the disease, but none have been effective enough or long-lasting.

Researchers at Boyce Thompson Institute (BTI) and in Emerging Pests and Pathogens Research Laboratory at the USDA- Agricultural Research Service in Ithaca, NY, are among many investigators working to find a solution, and their recent publication sheds light on an important strategy for controlling the spread of CLas. Published in Infection and Immunity, they present a possible mechanism for how CLas can infect its psyllid vector.

The bacteria are sucked up when a psyllid feeds on an infected tree, replicate inside the insect, and then infect healthy trees as the psyllid feeds throughout a grove. Without hitching a ride in the insect, CLas would not be able to infect new trees, and thus no new trees would succumb to citrus greening disease. With the long-term goal to disrupt this interaction, researchers in the Heck lab have focused on an important point: not all psyllids are equal in their ability to spread CLas.

"Research has shown over and over that nymphs are able to acquire the bacteria from the plant much better than adults," said Marina Mann, BTI researcher and first-author on the study. "Answering why is one of our next steps because it may give us a way to control the psyllid's ability to spread the bacteria."

To effectively be spread by psyllids, CLas must pass through the cells lining the insect's gut. The lab, under the direction of BTI professor and ARS researcher Michelle Heck, has previously shown that the gut cells of adult ACP experience a severe stress response when infected by CLas. The cell nuclei become fragmented, and some cells will even undergo apoptosis - auto-induced cell suicide. In their recent publication, the researchers report a much different response in the young psyllid nymphs.

"When we looked at nymphs, we found that their nuclei rarely reached the same level of disruption we saw in adults, and thus appeared resistant to the effects of exposure to CLas," said Mann.

The next step will be to identify the mechanism for resistance in the nymphs so that it might be reversed to halt the spread of CLas. An important clue lies in how psyllids interact with symbiotic bacteria in its gut, especially Wolbachia pipientis.

Many insects are hosts for Wolbachia, and often depend on these bacteria for important benefits - much like how human health depends on gut bacteria. In their study, Mann and Heck show that in psyllid nymphs, Wolbachia and CLas reside within the same cells. To accommodate the beneficial bacteria, the nymph gut cells may actively avoid cell suicide, which, the authors hypothesize, might help CLas get in and multiply at the same time.

Their theory is supported by their discovery that the levels of CLas in psyllid nymphs are strongly correlated with the levels of W. pipientis, meaning that the nymphs that let more Wolbachia in have also let in more CLas. Although this link remains to be tested directly, understanding its mechanism could yield an important target for disrupting the psyllid-CLas interaction.

"We now have a foothold in our understanding of a molecular difference between nymph and adult psyllids in their guts, which CLas exploits to gain entry into the insect vector," said Heck, who is lead investigator for the project. "This is important to our ability to develop new ways to block transmission by insects in the grove."

"Citrus growers will be in a much better situation in terms of disease control and saving the U.S. citrus industry," said Dan Dreyer, Chairman of the California Citrus Research Board, which funds this and other research aimed at developing a management strategy for citrus greening.

"There are still many unanswered questions about CLas, how it is acquired and transmitted via the Asian citrus psyllid and how it causes the disease," continued Dreyer. "The more we learn about CLas and its vector, the closer we will get to moving citrus production past the threat of citrus greening."

###

Research reported in this news release was supported by the California Citrus Research Board, grant numbers 5300-155 and 5300-163, and the USDA National Institute of Food and Agriculture, grant number 2015-70016-23028.

Alexa M. Schmitz is the Science Editorial Associate for Boyce Thompson Institute.

Media Relations Contact:Alexa M. Schmitz (ams629@cornell.edu) or Keith Hannon (kch95@cornell.edu).

Communications Office 607-288-2578 Boyce Thompson Institute 533 Tower Road Ithaca, New York 14853 USA

To learn more about Boyce Thompson Institute (BTI) research, visit the BTI website.

Connect online with BTI at Facebook and Twitter.

About Boyce Thompson Institute: Boyce Thompson Institute is a premier life sciences research institution located in Ithaca, New York on the Cornell University campus. BTI scientists conduct investigations into fundamental plant and life sciences research with the goals of increasing food security, improving environmental sustainability in agriculture and making basic discoveries that will enhance human health. Throughout this work, BTI is committed to inspiring and educating students and to providing advanced training for the next generation of scientists. For more information, visit btiscience.org.

Media Contact

Alexa M. Schmitz
ams629@cornell.edu
607-288-2578

 @BTIscience

http://bti.cornell.edu 

Alexa M. Schmitz | idw - Informationsdienst Wissenschaft
Further information:
https://btiscience.org/explore-bti/news/post/new-direction-for-halting-citrus-greening-epidemic/
http://dx.doi.org/10.1128/IAI.00889-17

More articles from Life Sciences:

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Record levels of mercury released by thawing permafrost in Canadian Arctic
13.12.2018 | University of Alberta

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>