Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research project on dangerous hospital germ extended

07.03.2018

Cases of multi-resistant bacteria in hospitals have increased dramatically in recent years and the health system faces tremendous problems as a result. Alongside “old acquaintances”, such as Staphylococcus aureus (MRSA) or Klebsiella pneumonia, another pathogen has now arrived on the scene: Acinetobacter baumannii. In order to find new weapons for the fight against this aggressive germ, in 2014 the German Research Foundation established a Research Unit led by Goethe University Frankfurt which has now been extended for a further three years.

Infections with Acinetobacter baumannii are often fatal due to this bacterium’s increasing antibiotic resistance. In some European countries, over 90 percent of isolates no longer respond to antibiotic therapy. Particularly worrying is the fact that the pathogen is continuing its rapid advance throughout the whole world.


Petri dish with colonies of the dangerous hospital pathogen Acinetobacter baumannii.

Photo: Goethe University Frankfurt

In order to obtain results in this situation that can be put to use as quickly as possible in clinical practice, natural scientists and physicians are working closely together in the Research Unit “Adaptation and Persistence of Acinetobacter baumannii”. Several institutes at Goethe University Frankfurt – Molecular Microbiology & Bioenergetics, Medical Microbiology & Infection Control, the Institute of Cell Biology & Neuroscience and the Institute of Biochemistry – are involved in the project together with the Robert Koch Institute and the universities in Cologne and Regensburg.

“We have achieved something quite unique: We use patient isolates, sequence their genome and analyse their pathogenic properties, which are then characterized with regard to countermeasures,” explain Professor Volker Müller, microbiologist, and Professor Volkhard Kempf, microbiologist and physician, who are the Research Unit’s two spokespersons. It has already been possible to identify first virulence traits by means of this approach.

The researchers know meanwhile what the bacterium feeds on, how it survives stress, how it adheres to animate and inanimate surfaces and how it withstands antibiotics. This knowledge enables them to test new targets for deactivating the bacterium. They discovered, for example, that bacteria are no longer able to trigger infections if you take away their ability to synthesise a certain sugar (trehalose). The research team is now working hard to shed light on this sugar’s biosynthesis process so that inhibitors can be developed.

The evaluators found this work so convincing that the German Research Foundation has not only extended the project but also increased its budget. The work undertaken in future will produce new answers to the question of how this increasingly threatening bacterium can be treated.

A picture can be downloaded from: www.uni-frankfurt.de/70620941
Caption: Petri dish with colonies of the dangerous hospital pathogen Acinetobacter baumannii.

Photo: Goethe University Frankfurt

Further information: Professor Volker Müller, spokesperson of Research Unit 2251, Molecular Microbiology & Bioenergetics, Faculty of Biological Sciences, Riedberg Campus, Tel.: +49(0)69-798-29507; vmueller@bio.uni-frankfurt.de.
Professor Volkhard Kempf, University Hospital Frankfurt, Institute for Medical Microbiology and Infection Control, Faculty of Medicine, Niederrad Campus, Tel.: +49(0)69- 6301-5019, volkhard.kempf@kgu.de, http://www.bio.unifrankfurt.de/51172482

Current news about science, teaching, and society in GOETHE-UNI online (www.aktuelles.uni-frankfurt.de)

Goethe University is a research-oriented university in the European financial centre Frankfurt The university was founded in 1914 through private funding, primarily from Jewish sponsors, and has since produced pioneering achievements in the areas of social sciences, sociology and economics, medicine, quantum physics, brain research, and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a "foundation university". Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities. Together with the Technical University of Darmstadt and the University of Mainz, it acts as a partner of the inter-state strategic Rhine-Main University Alliance.

Internet: www.uni-frankfurt.de

Publisher: The President of Goethe University Editor: Dr. Anne Hardy, Referee for Science Communication, PR & Communication Department, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: (069) 798-13035, Fax: (069) 798-763 12531.

Tobias Lang | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The hidden structure of the periodic system
17.06.2019 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>