Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research project to boost European fish farming

02.02.2009
European fish farms are to be globally competitive and produce the best fish in terms of ethics and quality. That is the aim of the Lifecycle research project, which is directed from the University of Gothenburg. A total sum of SEK 130 million is being invested in the project, of which SEK 64 million comes from the EU.

Europe is the part of the world that is most dependent on fish imports. This situation is due in part to the drastic cuts in local sea fish quotas and the collapse of fish stocks, which have also been observed in Sweden.

The increased level of imports may have several consequences: low supply and high prices lead to a decrease in consumption, which in turn results in public-health problems as fish forms part of a healthy diet. The fact that we make use of fish stocks in other parts of the world also contributes to over-exploitation, as well as to multinational fisheries enterprises dislodging local fishing industries. The EU, for example, has bought substantial fishing rights along the coast of Africa. Imports also lead to long-haul transport and make quality control more difficult.

At the same time, there has not been great support for the idea of making up for reduced fishing by developing Swedish fish farming. In its latest research bill, however, the Swedish Government stresses "increased knowledge for the development of aquaculture" as a high-priority area of research. The EU has also announced research funds to improve the competitiveness of the European fish-farming industry. One consequence of this is the launch of the EU project LIFECYCLE, which is directed by Professor Thrandur Björnsson and his research team at the Department of Zoology of the University of Gothenburg.

The purpose of LIFECYCLE is to enhance knowledge of the physiology of fish so that the problems that arise in relation to the life processes of farmed fish can be tackled. Examples of such problems are disruption during larval development and growth, in metamorphosis and puberty, in immunological defence and in adaptations to the environment. Through new research, the project is intended to enhance biological knowledge of these life processes, identify answers to practical problems and improve the fish-farming process, in terms of both ethics and quality.

A total sum of SEK 130 million is being invested in the project. The EU is contributing around SEK 64 million, around ten million of which will be used at the University of Gothenburg for research on growth and development physiology, intestinal physiology, the adaptation of fish to different environments and hormonal regulation of different life processes.

"In this project we will be primarily conducting research on the four most important farmed species in Europe, Atlantic salmon, rainbow trout, sea bream and European sea bass, but also on species such as cod and halibut," says Björnsson.

Fourteen research teams from nine countries are taking part in the four-year EU project which started on 1 February 2009. In the spring, researchers involved in the project will meet in Gothenburg for detailed planning of the cooperation and large-scale trials.

For further information, please contact:
Thrandur Björnsson, Department of Zoology, University of Gothenburg
+46 (0)31-7863691
+46 (0)733-441820
+46 (0)31-122196 (home)
Presscontact:
Krister Svahn
press communicator
Faculty of Science, University of Gothenburg
+46 (0)31-786 49 12
+46 (0)732-096 339
krister.svahn@science.gu.se

Krister Svahn | idw
Further information:
http://www.science.gu.se
http://www.gu.se/

More articles from Life Sciences:

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Protein droplets keep neurons at the ready and immune system in balance
16.08.2018 | Howard Hughes Medical Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>