Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research points to way to improve heart treatment

11.03.2010
Current drugs used to treat heart failure and arrhythmias (irregular heartbeat) have limited effectiveness and have side effects. New basic science findings from a University of Iowa study suggest a way that treatments could potentially be refined so that they work better and target only key heart-related mechanisms.

The team, which included researchers from Vanderbilt University, showed in theory that it might be possible to use drugs that maintain the positive effects on heart function of a known enzyme called calmodulin kinase II (CaM kinase) while reducing its negative effects. The findings were published the week of March 1 in the Early Online Edition of the Proceedings of the National Academy of Sciences.

anderson"CaM kinase helps regulate calcium, which is essential to heart function, but CaM kinase's calcium connection also can play a role in electrical problems that lead to irregular heart beats and cell death. This new finding suggests a specific way to keep the wanted CaM kinase effects but at the same time eliminate the bad effects," said Mark E. Anderson, M.D., Ph.D., professor and head of internal medicine at the University of Iowa Roy J. and Lucille A. Carver College of Medicine.

Anderson said that heart failure is among the most common discharge diagnoses for patients leaving hospital. "Most patients with heart failure are at risk of sudden death. Figuring out how and why heart failure happens is a major goal for academic medicine," Anderson said.

CaM kinase adds phosphate groups to other proteins -- a process known as phosphorylation. This process can activate proteins and set in motion or sustain cell activity.

"The study showed, surprisingly, the importance of CaM kinase's effect on two particular amino acid targets among the thousands of amino acids that make up protein targets for phosphorylation by CaM kinase. Controlling these targets might prevent the 'ripple effect' of other molecular events that result in arrhythmia and cell death," said Anderson, who also is a member of the University of Iowa Heart and Vascular Center and holds the Francois Abboud Chair in Internal Medicine.

Using rabbit heart cells, which behave much like human heart cells, the team showed that if CaM kinase is prevented from interacting with a protein that regulates calcium channels, negative effects, including cell death, do not occur. Specifically, they showed it was possible to either block the specific site on the protein where CaM kinase binds or block the ability of CaM kinase to perform phosphorylation on the protein.

In both cases, blocking the action of CaM kinase prevented too much calcium activity, which can be harmful.

"CaM kinase is needed to maintain calcium channel function, which allows the heart to contract. But too much CaM kinase, and consequently too much calcium entry into heart cells, causes electrical instability and other downstream molecular problems that can lead to cell overload and cell death, which causes heart failure," Anderson said.

Anderson said a next step is to try to develop drugs to prevent the unwanted CaM kinase effects.

The study's primary author was Olha Koval, Ph.D., UI postdoctoral research scholar in internal medicine. Other major UI contributors included Thomas Hund, Ph.D., associate in cardiology, and Peter Mohler, Ph.D., associate professor of internal medicine.

Anderson is a named inventor on a patent owned by Stanford University claiming to treat arrhythmias by CaM kinase inhibition.

NOTE TO EDITORS: "Fondation" in the name "Fondation Leducq" is spelled without a "u."

Becky Soglin | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>