Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research on repetitive worm behavior may have implications for understanding human disease

13.05.2019

Repetition can be useful if you're trying to memorize a poem, master a guitar riff, or just cultivate good habits. When this kind of behavior becomes compulsive, however, it can get in the way of normal life--an impediment sometimes observed in psychiatric illnesses like Tourette's syndrome and autism spectrum disorders. Now, Rockefeller scientists have identified a brain circuit that underlies repetition in worms, a finding that may ultimately shed light on similar behavior in humans.

Studying the microscopic roundworm C. elegans, the researchers found that defects in one protein cause animals to reorient themselves over and over again. Described in Nature Communications, these observations are bolstered by previous research in mice, and suggest that similar mechanisms may drive repetitive behavior in a range of animals, including humans.


Human astrocytes are important for brain signaling. Researchers are gaining new insights into their function by studying their worm equivalent.

Credit: Laboratory of Developmental Genetics at The Rockefeller University

Usage Restrictions: Image may be used to illustrate the research described in the accompanying release.

Chemical cleanup

The scientists initially set out to understand how astrocytes, star-shaped cells found in mammalian brains, help neurons do their job. Astrocytes are thought to be responsible for, among other things, disposing of excess neurochemicals at synapses, the connections between neurons.

This task is vital because if chemicals are not removed in a timely fashion, they can stimulate neurons in unexpected ways, disrupting normal brain function. To better understand this process, Menachem Katz, a research associate in the lab of Shai Shaham, looked to C. elegans CEPsh glial cells, which he suspected to be the worm equivalents of astrocytes.

Confirming this suspicion, Katz, Shaham, and their colleagues, used mRNA sequencing to show that mouse astrocytes and CEPsh glia have similar genetic signatures. Among other commonalities, both cell types produce the protein GLT-1, the mammalian version of which is responsible for clearing the chemical glutamate away from synapses. This finding, says Shaham, afforded the researchers a unique opportunity to define how astrocytes and GLT-1 work.

"Scientists have been trying to understand the functions of astrocytes for many years, and in mammals it's not easy because these cells are essential for keeping neurons alive," he says. "But in C. elegans there are only four CEPsh glial cells, and they are not required for neuron survival. This allowed us to investigate the specific roles of glutamate transporters, without worrying about the side effects of neuron sickness."

To do so, the researchers created C. elegans lacking GLT-1. Surprisingly, this depletion did not result in glutamate accumulation at synapses, as was expected. Instead, the worms exhibited oscillations in synaptic glutamate levels--and a peculiar behavioral defect.

"These animals changed their direction at a crazy rate. They just kept moving forward and going back, moving forward and going back," says Shaham, the Richard E. Salomon Family Professor. "And when we analyzed this behavior, we discovered that they did so in a really interesting pattern."

Turn, turn, turn

It's perfectly normal for C. elegans to change course every now and then. Typically, the worm reorients itself about once every 90 seconds. But worms lacking GLT-1, the researchers found, took this action to the extreme: at 90 second intervals the animals executed not one reversal, but bursts of them. "It's as if once they start the action, they can't stop repeating it," says Katz.

Further experiments revealed that removal of the glutamate receptor MGL-2 blocked both repetitive reversals and synaptic glutamate oscillations. The researchers concluded that when glutamate is not efficiently cleared, the chemical stimulates MGL-2, which in turn triggers the release of yet more glutamate. This process then repeats on a loop; and every time glutamate is released, it activates the neuron responsible for initiating reversals.

"These findings suggest a simple model for how repetition can occur in worms," says Katz. "And, it turns out, this model may hold up in more complex nervous systems."

Indeed, past experiments have shown that GLT-1 mutations cause repetitive grooming in mice, and that compounds blocking the mouse version of MGL-2 eliminate similar behavior in other contexts. Taken together with the new findings in C. elegans, this research suggests that abnormal glutamate secretion may underlie repetitive behaviors across the animal kingdom--raising the possibility that they may be relevant to understanding pathological repetition in humans.

Consistent with this idea, human genetics studies have found mutations associated with glutamate signaling in patients with obsessive compulsive disorder and autism spectrum disorders, both of which can be accompanied by repetitive behavior.

"We were really excited to see these links in the scientific literature because it means our findings may help uncover a plausible mechanism underlying an important class of human diseases," says Shaham. "And, more broadly, we're showing that candidate genes affected in human disease can be studied and verified in the simpler worm."

Media Contact

Katherine Fenz
kfenz@rockefeller.edu
212-327-7913

 @rockefelleruniv

http://www.rockefeller.edu 

Katherine Fenz | EurekAlert!
Further information:
https://www.rockefeller.edu/news/25817-research-repetitive-worm-behavior-may-implications-understanding-human-disease/
http://dx.doi.org/10.1038/s41467-019-09581-4

Further reports about: Astrocytes elegans glial cells glutamate neurons oscillations synapses

More articles from Life Sciences:

nachricht Crystal growth kinetics and its link to evolution. New findings about biomineralization in molluscan shells
24.09.2019 | Technische Universität Dresden

nachricht DNA is held together by hydrophobic forces
23.09.2019 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Wire laser material deposition – a smart way to save costs

24.09.2019 | Trade Fair News

On the trail of self-healing processes: Bayreuth biochemists reveal insights into extraordinary regenerative ability

23.09.2019 | Life Sciences

New method for the measurement of nano-structured light fields

23.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>