Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research offers new clues to prevent infection in cardiac devices

11.04.2012
Bacteria such as Staphylococcus aureus, the 'superbug' behind MRSA, can be a major problem for patients who have a medical implant, such as a replacement heart valve or pacemaker.

Bacteria are able to form colonies – called biofilms – on the implanted device, which can lead to wider infections such as endocarditis, a bacterial infection of the heart.

Research led by scientists in the Department of Biology at the University of York has shed new light on how these “biofilm” structures are formed. Biofilms help the bacteria within to avoid attack from the immune system and antibiotics.

Often the only way to tackle the resulting infection is to remove the affected device, which can be a difficult and invasive process.

The team from the University of York, led by Professor Jennifer Potts, included British Heart Foundation-funded PhD student Dominika Gruszka. They found that the bacteria release long, thin protein chains to connect with other bacteria or mesh with other bacterial products. The chains have a highly unusual repetitive structure which could not have been predicted and provides important clues to how they might work.

A similar protein is found on the surface of Staphylococcus epidermidis, another bacterium commonly found in device infections.

Professor Potts, a BHF Senior Research Fellow, said: “This discovery provides an important step forward in understanding how biofilms form. It should help in the development of new ways of preventing infection of cardiac devices by these bacteria.”

Dr Hélène Wilson, Research Advisor at the British Heart Foundation, which co-funded the study, said:

"These clusters of bacteria on implanted devices can be a problem for heart patients because they are very difficult to treat with antibiotics. Often the only way to tackle the infection is to remove the affected device, which can be a difficult and invasive process and lead to further complications.

"This discovery is an important step towards improving our understanding of how these biofilms are structured, which could help lead to new treatments or new ways to prevent them forming."

The research, which also involved scientists at Trinity College and the Universities of Cambridge, Huddersfield, Leeds, is published in PNAS Online Early Edition.

David Garner | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Life Sciences:

nachricht Gold nanoclusters: new frontier for developing medication for treatment of Alzheimer's disease
17.02.2020 | Science China Press

nachricht Catalyst deposition on fragile chips
17.02.2020 | Ruhr-University Bochum

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Gold nanoclusters: new frontier for developing medication for treatment of Alzheimer's disease

17.02.2020 | Life Sciences

Artificial intelligence is becoming sustainable!

17.02.2020 | Information Technology

Catalyst deposition on fragile chips

17.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>