Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research icebreaker Polarstern departs for the Fram Strait

09.07.2018

Researchers will investigate various oceanographic and biological aspects between the waters of the Atlantic and Arctic Oceans

On Tuesday, 10 July 2018 the research icebreaker Polarstern will leave its homeport in Bremerhaven, headed for the Arctic. The main focus of the journey will be on long-term oceanographic measurements and biological research in the water column and on the seafloor of the Fram Strait between Greenland and Svalbard.


A mooring appears at the ocean's surface.

Photo: Alfred-Wegener-Institut / M. Schiller

Every second, the West Spitsbergen Current transports roughly six million cubic metres of water northwards, through the eastern Fram Strait. Over the past 30 years the average temperature of these water masses has risen by one degree Celsius – today, measuring between three and six degrees Celsius, the Atlantic water is comparatively warm for this area at the transition to the Arctic Ocean.

Just 200 kilometres to the west, water measuring a frigid minus 1.8 degrees Celsius flows out of the Arctic Ocean, together with sea ice, headed south. In theory, these water masses should never come into contact with one another.

But in reality, thanks to small-scale eddies they do mix, and only part of the warm water continues northward to the high Arctic. As a result, warm water can instead find its way to the glaciers calving into the sea on the eastern coast of Greenland, melting them from below.

Exactly where and how these eddies occur is one of the key questions that the 48 researchers led by chief scientist Dr Wilken-Jon von Appen from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) will now explore in the Fram Strait.

They will retrieve what are known as moorings: chains that are covered with sensors for measuring temperature, flow speeds and, only since 2016, many other parameters as well. Since 1997, AWI researchers and their Norwegian colleagues have operated a grid of moorings, located near the 79° North parallel. As part of the Helmholtz infrastructure project FRAM, in 2016 they installed new moorings in areas where they suspect warm Atlantic water might branch off to the west.

“Our ocean models can very accurately depict where this westward flow might occur. Now I’m eager to see whether or not we actually placed the sensors where parts of the south-north current of warm Atlantic water forks off to the west,” says AWI oceanographer Wilken von Appen. “It would be a great success if our two year long measurements could verify this theory of water exchange.”

He and his team are just as curious to see what data the moorings’ biological and chemical sensors have gathered. These sensors, which are still in the pilot phase, will hopefully offer a wholly new perspective on how the interplay of water masses affects productivity in the marginal ice zone.

The oceanography team will retrieve a total of 20 moorings, so they can begin analysing the readings gathered, some of which date back two years. Once they have them on board, they’ll deploy a new batch of moorings with fresh sensors and batteries, so the long-term monitoring of the Fram Strait can continue.

The expedition crew also includes many biologists, who will be observing and investigating the biodiversity in the water column and on the seafloor. One of their goals is to determine which phytoplankton and amphipod species the increasingly warm Atlantic water is transporting to the Arctic. The distribution and number of species have an effect on what ultimately sinks to the ocean’s depths, serving as a food source for bottom-dwellers.

In addition to surveying these organisms, the biologists will continue their research on litter in the Arctic deep sea: since 2002, a camera system towed behind the Polarstern has been used to photograph the ocean floor during predefined transects. Subsequent analyses will tell us whether or not the litter pollution of the Arctic has worsened. There will also be chemists on board, who will investigate which trace elements the water masses move with them.

After nearly four weeks at sea, the Polarstern will call to port in Tromsø, Norway. Two geoscientific expeditions, one off the coast of Greenland and another in the Central Arctic, are slated for later in the Arctic season.

Notes for Editors

Printable images are available at: https://www.awi.de/nc/en/about-us/service/press/press-release/research-icebreake...

Video footage can be provided on request: media(at)awi.de

Your scientific contact person is Dr Wilken-Jon von Appen, tel. +49 (471) 4831-2903 (e-mail: wilken-jon.von.appen(at)awi.de). Your contact person at the Communications Dept. is Dr Folke Mehrtens, tel. +49 (471) 4831-2007 (e-mail: media(at)awi.de).

Follow the Alfred Wegener Institute on Twitter (https://twitter.com/AWI_Media) and Facebook (www.facebook.com/AlfredWegenerInstitute).

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de/

More articles from Life Sciences:

nachricht X-ray scattering shines light on protein folding
10.07.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht Surprisingly many peculiar long introns found in brain genes
10.07.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>