Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research in fish provides new clues about deadly form of liver cancer

05.07.2011
Scientists fish for answers about hepatocellular carcinoma

Hepatocellular carcinoma (HCC), the most common type of liver cancer, is a leading cause of cancer-related deaths worldwide. Although there are several treatment options available, they are largely unsuccessful because the disease is so poorly understood.

Clinical studies of patients with HCC, combined with studies using mice and other animal models, have provided some clues, but many questions about how to diagnose and treat this deadly form of cancer remain. Zhiyuan Gong and Serguei Parinov from the National University of Singapore decided to pursue these questions using zebrafish as a model system.

Their study uncovers new information that might help to diagnose and treat HCC in humans, and shows that zebrafish are a powerful and cost-effective model to study liver cancer. Gong and Parinov publish their results in Disease Models & Mechanisms on July 5th, 2011 at http://dmm.biologists.org/.

Previous work indicated that cancer cells from patients with HCC always have abnormally high activation of a cellular pathway called Ras. However, whether and how the Ras pathway actually causes liver cancer was not clear. To focus in on this issue, Gong and Parinov generated zebrafish that are genetically engineered to express a cancer-causing form of Ras (krasV12) in the liver.

Fish that had the highest expression of krasV12 all died rapidly of malignant liver cancer (mostly within 30 days), whereas fish with lower krasV12 expression survived for longer and did not develop full-blown liver cancer. These results suggest that only very high levels of Ras pathway activation can cause HCC.

The researchers also uncovered abnormalities in several other cellular pathways in zebrafish that developed liver cancer, and genetic studies confirmed that the progression of disease happens similarly in zebrafish and humans. This allowed the researchers to establish a 'genetic signature' for HCC, which could potentially be translated into a method for diagnosing the disease in humans. In addition, the stage of cancer is an important factor in determining how patients should be treated. In this study, the researchers determined genetic signatures that were specific to early- and late-stage liver cancer, which might help in planning treatment regimes for patients with HCC.

These new findings using a zebrafish model of HCC should help to guide studies of this complex cancer in humans. Although validation studies in patients with HCC are required, this work provides new evidence that drugs targeting the Ras pathway are a promising avenue for therapy.

IF REPORTING ON THIS STORY, PLEASE MENTION DISEASE MODELS & MECHANISMS AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://dmm.biologists.org/

REFERENCE: Nguyen, A. T., Emelyanov, A., Koh, C. H. V., Spitsbergen, J. M., Lam, S. H., Mathavan, S., Parinov, S. and Gong, Z. Dis. Model. Mech. doi:10.1242/dmm.007831

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to dmm.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Sarah Allan | EurekAlert!
Further information:
http://www.biologists.com
http://dmm.biologists.org/

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>