Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research findings may enable earlier diagnosis of uterine cancer

28.01.2009
Cancer of the uterus (womb) is the commonest gynaecological malignancy in the West. Research carried out at the University of Gothenburg has now identified a gene that may simplify future diagnosis.

Cancer is a genetic disease. It occurs when changes take place in the genes that regulate cell division, cell growth, cell death, cell signalling and blood vessel formation - either due to mutations caused by external factors such as smoking or radiation, or due to inherited changes.

This interaction between defective genes and environmental factors means that cancer is an extremely complex disease. Cancer of the uterus, or endometrial carcinoma, is no exception.

Cancer of the uterus is the commonest gynaecological malignancy in the West and accounts for between five and six per cent of all cancers in Swedish women. However, the symptoms are often vague, and we know little about the genetic factors that lead to the appearance and development of this form of cancer. It is therefore vital that these genes are identified, as this could enable doctors to make the diagnosis much more quickly and easily, allowing the development of more effective cancer treatment.

In her study, Sandra Karlsson, a researcher at the Department of Cell and Molecular Biology, has used inbred rats to locate the defective genes that cause uterine cancer. Like monozygotic (identical) twins, these inbred rats are genetically almost identical, which makes it much easier to study the influence of the environment in which they live.

"More than 90 per cent of the female rats in the study spontaneously developed uterine cancer. By using advanced techniques to analyse gene expression in the tumours, we succeeded in identifying a gene signature that could be used as a future diagnostic test for human uterine cancer," says Sandra Karlsson.

The signature is made up of three genes. One of them protects the cell against oxygen free radicals. These free radicals are naturally and continuously produced in the cell, but excess amounts, which can damage the cell and the body's DNA, are associated with over 200 diseases, from arteriosclerosis and dementia to rheumatism, cerebral haemorrhage and cancer. The studies carried out by Sandra Karlsson on human malignant tumours have confirmed that changes in this gene are present in early as well as late stage cancer.

"This shows that the identified gene has an important role in the origin and development of uterine cancer," says Sandra Karlsson.

The thesis Gene Expression Patterns in a Rat Model of Human Endometrial Adenocarcinoma was publicly defended on the December 19th. Supervisor - Professor Karin Klinga Levan.

For further information, please contact:
Sandra Karlsson, Department of Cell and Molecular Biology, University of Gothenburg.
+46 (0)500 44 86 44
+46 (0)731 50 40 64
sandra.karlsson@his.se

Krister Svahn | idw
Further information:
http://www.science.gu.se

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>