Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research enables artificial intelligence approach to create AAV capsids for gene therapies


Dyno Therapeutics founders and collaborators demonstrate machine-guided AAV capsid engineering with the potential to transform gene therapy

Dyno Therapeutics, a biotechnology company pioneering use of artificial intelligence in gene therapy, today announced a publication in the journal Science that demonstrates the power of a comprehensive machine-guided approach to engineer improved capsids for gene therapy delivery.

Improved AAV vector capsid for gene therapy engineered with a new machine-guided approach shows, in red, improvements in efficiency of viral production based on the average effect of insertions at all possible amino acid positions, with white showing neutral and blue showing deleterious positions. (Left: capsid viewed from outside, Right: cut-out to reveal inner positions).

Credit: Eric Kelsic, Dyno Therapeutics

The research was conducted by Dyno co-founders Eric D. Kelsic, Ph.D. and Sam Sinai, Ph.D., together with colleague Pierce Ogden, Ph.D., at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School laboratory of George M. Church, Ph.D., a Dyno scientific co-founder. The publication, entitled "Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design," is available here:

AAV capsids are presently the most commonly used vector for gene therapy because of their established ability to deliver genetic material to patient organs with a proven safety profile.

However, there are only a few naturally occurring AAV capsids, and they are deficient in essential properties for optimal gene therapy, such as targeted delivery, evasion of the immune system, higher levels of viral production, and greater transduction efficiency. Starting at Harvard in 2015, the authors set out to overcome the limitations of current capsids by developing new machine-guided technologies to rapidly and systematically engineer a suite of new, improved capsids for widespread therapeutic use.

In the research published in Science, the authors demonstrate the advance of their unique machine-guided approach to AAV engineering. Previous approaches have been limited by the difficulty of altering a complex capsid protein without breaking its function and by the general lack of knowledge regarding how AAV capsids interact with the body. Historically, rather than addressing this challenge directly, the most popular approaches to capsid engineering have taken a roundabout solution: generating libraries of new capsids by making random changes to the protein. However, since most random changes to the capsid actually result in decreased function, such random libraries contain few viable capsids, much less improved ones. Recognizing the limitation of conventionally generated capsid libraries, the authors implemented a machine-guided approach that gathered a vast amount of data using new high-throughput measurement technologies to teach them how to build better libraries and, ultimately, lead to synthetic capsids with optimized delivery properties.

Focusing on the AAV2 capsid, the authors generated a complete landscape of all single codon substitutions, insertions and deletions, then measured the functional properties important for in vivo delivery. They then used a machine-guided approach, leveraging these data to efficiently generate diverse libraries of AAV capsids with multiple changes that targeted the mouse liver and that outperformed AAVs generated by conventional random mutagenesis approaches. In the process, the authors' systematic efforts unexpectedly revealed the existence of a previously-unrecognized protein encoded within the sequence of all the most popular AAV capsids, which they termed membrane-associated accessory protein (MAAP). The authors believe that the protein plays a role in the natural life cycle of AAV.

"This is just the beginning of machine-guided engineering of AAV capsids to transform gene therapy," underscores co-author Sam Sinai, Ph.D., Lead Machine Learning Scientist and co-founder of Dyno Therapeutics. "The success of the simple linear models used in this study has led us to pursue more data and higher capacity machine learning models, where the potential for improvement in capsid designs feels boundless."

"The results in the Science publication demonstrate, for the first time, the power of linking a comprehensive set of advanced techniques - large scale DNA synthesis, pooled in vitro and in vivo screens, next-generation sequencing readouts, and iterative machine-guided capsid design - to generate optimized synthetic AAV capsids," explains co-first and co-corresponding author Eric D. Kelsic, Ph.D., CEO and co-founder of Dyno Therapeutics. "At Dyno, our team is committed to advancing these technologies to identify capsids that meet the urgent needs of patients who can benefit from gene therapies."


About Dyno Therapeutics

Dyno Therapeutics is a pioneer in applying artificial intelligence to gene therapy. The company's powerful and proprietary genetic engineering platform is designed to rapidly and systematically develop improved AAV capsids that redefine the gene therapy landscape. Dyno was founded by experienced biotech entrepreneurs and leading scientists in the fields of synthetic biology, gene therapy, and machine learning. The company is located in Cambridge, Massachusetts. For additional information, please visit the company website at

1. Ogden P.J., Kelsic E.D., Sinai S., Church G.M. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. Science. 2019 Nov 29;366(6469):1139-43. doi: 10.1126/science.aaw2900

Media Contact

Kathryn Morris

Kathryn Morris | EurekAlert!

Further reports about: gene therapy machine learning synthetic

More articles from Life Sciences:

nachricht Neuronal circuits in the brain 'sense' our inner state
15.07.2020 | Technische Universität München

nachricht Novel test method detects coronavirus in highly diluted gargle samples
15.07.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new path for electron optics in solid-state systems

A novel mechanism for electron optics in two-dimensional solid-state systems opens up a route to engineering quantum-optical phenomena in a variety of materials

Electrons can interfere in the same manner as water, acoustical or light waves do. When exploited in solid-state materials, such effects promise novel...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Latest News

Tiny bubbles make a quantum leap

15.07.2020 | Physics and Astronomy

Higher-order topology found in 2D crystal

15.07.2020 | Materials Sciences

Russian scientists have discovered a new physical paradox

15.07.2020 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>