Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research discovers frequent mutations of chromatin remodeling genes in TCC of the bladder

08.08.2011
Study published online today in Nature Genetics

BGI, the world's largest genomics organization, Peking University Shenzhen Hospital and Shenzhen Second People's Hospital, announced today that the study on frequent mutations of chromatin remodeling genes in transitional cell carcinoma (TCC) of the bladder was published online in Nature Genetics. This study provides a valuable genetic basis for future studies on TCC, suggesting that aberration of chromatin regulation might be one of the features of bladder cancer.

Bladder cancer is the ninth most common type of cancer worldwide, which affects three times as many men as women. Almost all bladder cancers originate in the urothelium, so they are also known as one of the most common tumors of the genitourinary tract. Each year, about 360,000 new cases of bladder cancer are expected, and about 150,000 people will die of this disease in the world. In North America, South America, Europe, and Asia, TCC is the most common type of bladder cancer diagnosed, accounting for 90% of all bladder malignancies in those regions.

"Considering the high risks of TCC and the lack of comprehensive analysis, we and our partners initiated this project to identify other previously unidentified genes associated with the bladder cancer." said Professor Zhiming Cai, President of Shenzhen Second People's Hospital and the former President of Peking University Shenzhen Hospital. "I hope our unexpected discoveries in this study can provide more important insights into potential diagnoses and the therapeutic applications." he added.

In this study, the exomes of nine patients with TCC were sequenced with BGI's exome sequencing platform. Then, all the somatically mutated genes were screened in a prevalence set of 88 additional patients with TCC at different tumor stages and grades. "After the detections and statistical analysis, we discovered 49 new significantly mutated genes associated with TCC, and these genes are previously unknown to be mutated in TCC." said Professor Yaoting GuiCthe co-leading author of the study and Vice-Director of the Institute of Urology at Peking University Shenzhen Hospital, "Another interesting finding is that eight genes among them are associated with chromatin remodeling, which could be related with frequent mutations in the majority of TCCs."

"We identified the genetic aberrations of the chromatin remodeling genes in 59% of the 97 individuals with TCC, and discovered one gene, UTX, could be altered substantially more frequently in tumors with low stages and grades." said Guangwu Guo, one of the co-leading authors of the study and PI of this project at BGI. "This study indicates UTX may pose a potential role in the classification and diagnosis of bladder cancer."

As we all know, aberrations of the chromatin remodeling genes may directly lead to the misregulation of multiple downstream effector genes, consequently promoting the tumor genesis process. "In our study, the newly discovered genetic mutations in the chromatin remodeling genes, except for UTX, are previous unknown in the primary tumors of TCC." said professor Cai. "Our results demonstrate that the disruption of the chromatin remodeling machinery may be one of the main mechanisms that lead to TCC."

Professor Jun Wang, Executive Director of BGI, said, "This study provides further understanding of bladder cancer and other human cancers through the comprehensive analysis of genetic alterations in TCC. It also implicates the necessity to enhance the epigenomics research in the field of cancer studies in the future. "

About Peking University Shenzhen Hospital

Peking University Shenzhen Hospital is a leading academic hospital in Guangdong province of southern China. The hospital covers an area of 67 thousands square meters with construction area of 90 thousands square meters and 925 inpatient beds, and possesses about 1600 staffs, among of whom, there are more than 300 Professors and Associate Professors. The hospital consists of 52 clinical departments including 1 national key department, 1 provincial key department, 5 municipal key departments and laboratories, and 3 hospital key departments. The hospital supplies excellent services for the patients from Shenzhen, Hong Kong and Macao, and also for the patients from other countries all over the World. For more information, please visit www.pkuszh.com.

About BGI

BGI was founded in Beijing, China on September 9th, 1999 with the mission of being a premier scientific partner to the global research community. The company's goal is to make leading-edge genomic science highly accessible through its investment in infrastructure that leverages the best available technology, economies of scale, and expert bioinformatics resources. BGI, and its affiliates, BGI Americas and BGI Europe, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has established a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research that has been published to date in more than 50 top-tier academic journals. These accomplishments include sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, most recently, 1000 genomes and human Gut metagenome.

For more information about BGI please visit www.genomics.cn or www.bgisequence.com

Contact Information:

Zhiming Cai,
President of Shenzhen Second People's Hospital.
caizhiming2000@yahoo.com.cn
Bicheng Yang
Director of Global Marketing Department
BGI
+86-755-25273450
yangbicheng@genomics.cn
www.bgisequence.com

Lei Su | EurekAlert!
Further information:
http://www.genomics.cn
http://www.bgisequence.com

Further reports about: BGI Genetics Human vaccine Nature Immunology Shenzhen TcC genetic mutation mutated gene

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>