Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research constructs ant family tree

22.04.2013
Confirms date of evolutionary origin, underscores importance of Neotropics

Anyone who has spent time in the tropics knows that the diversity of species found there is astounding and the abundance and diversity of ants, in particular, is unparalleled.

Scientists have grappled for centuries to understand why the tropics are home to more species of all kinds than the cooler temperate latitudes on both sides of the equator. Several hypotheses have been proposed to explain the higher species numbers in the tropics, but these hypotheses have never been tested for the ants, which are one of the most ecologically and numerically dominant groups of animals on the planet.

New research by evolutionary biologists Dr. Corrie Moreau of Chicago's Field Museum and Dr. Charles Bell of the University of New Orleans is helping answer these questions. Their findings are presented this week in the journal Evolution.

The scientists used DNA sequence data to build the largest ant tree-of-life to date. This tree-of-life, or family tree of ants, not only allowed them to better understand which ant species are related, but also made it possible to infer the age for modern ants because information from the fossil record in the form of geologic time was included in the research.

This ant tree-of-life confirmed an earlier surprising finding that two groups of pale, eyeless, subterranean ants, which are unlike most typical ants, are the earliest living ancestors of the modern ants. The time calibrated ant tree-of-life showed that the ants found on the planet today can trace their evolutionary origins back to between 139 and158 million years ago – during the time the dinosaurs walked the Earth (a finding in line with previous studies).

But why are there more species of ants in the tropics? To explain this pattern of higher species diversity for many tropical organisms, biologists have used the analogies of the tropics acting as a "museum" or "cradle" for speciation. In the case of the museum analogy, the tropical climates have more species because this is where the oldest groups persist throughout evolutionary time. The converse of this explanation is that the tropics are a cradle where new species are more likely to be generated.

To better understand where on the planet the ants arose and if any single geographic area was more important for their evolutionary origins, Moreau and Bell reconstructed the biogeographic history of the ants. These analyses found that the Neotropics of South America were vital to the deep and continued evolutionary origin of the ants. This finding suggests that for the ants the rainforests of the Neotropics are both a museum, protecting many of the oldest ant groups, and also a cradle that continues to generate new species.

As ants are one of the most ecologically important groups of terrestrial organisms, these findings suggest that protecting the rainforests of the Neotropics are vital to the health and success of both the ants that live in them and all the other animals, plants, fungi, and microbes worldwide that rely on ants to survive.

Interviews and images available upon request.

Nancy O'Shea | EurekAlert!
Further information:
http://www.fieldmuseum.org

More articles from Life Sciences:

nachricht An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening
25.06.2019 | Johannes Gutenberg-Universität Mainz

nachricht Symbiotic upcycling: Turning “low value” compounds into biomass
25.06.2019 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>