Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reprogramming patients' cells offers powerful new tool for studying, treating blood diseases

31.07.2013
CHOP researchers advance stem cell studies in a childhood leukemia and diamond blackfan anemia

First produced only in the past decade, human induced pluripotent stem cells (iPSCs) are capable of developing into many or even all human cell types. In new research, scientists reprogrammed skin cells from patients with rare blood disorders into iPSCs, highlighting the great promise of these cells in advancing understanding of those challenging diseases—and eventually in treating them.

"The technology for generating these cells has been moving very quickly," said hematologist Mitchell J. Weiss, M.D., Ph.D., corresponding author of two recent studies led by The Children's Hospital of Philadelphia (CHOP). "These investigations can allow us to better understand at a molecular level how blood cells go wrong in individual patients—and to test and generate innovative treatments for the patients' diseases."

Weiss, with Monica Bessler, M.D., Philip Mason, Ph.D., and Deborah L. French, Ph.D., all of CHOP, led a study on iPSCs and Diamond Blackfan anemia (DBA) published online June 6 in Blood. Another study by Weiss, French and colleagues in the same journal on April 25 focused on iPSCs in juvenile myelomonocytic leukemia (JMML).

In DBA, a mutation prevents a patient's bone marrow from producing normal quantities of red blood cells, resulting in severe, sometimes life-threatening anemia. This basic fact makes it difficult for researchers to discern the underlying mechanism of the disease: "It's very difficult to figure out what's wrong, because the bone marrow is nearly empty of these cells," said Bessler, the director of CHOP's Pediatric and Adult Comprehensive Bone Marrow Failure Center.

The study team removed fibroblasts (skin cells) from DBA patients, and in cell cultures, using proteins called transcription factors, reprogrammed the cells into iPSCs. As those iPSCs were stimulated to form blood tissues, like the patient's original mutated cells, they were deficient in producing red blood cells.

However, when the researchers corrected the genetic defect that causes DBA, the iPSCs developed into red blood cells in normal quantities. "This showed that in principle, it's possible to repair a patient's defective cells," said Weiss.

Weiss cautioned that this proof-of-principle finding is an early step, with many further studies to be done to verify if this approach will be safe and effective in clinical use.

However, he added, the patient-derived iPSCs are highly useful as a model cell system for investigating blood disorders. For instance, DBA is often puzzling, because two family members may have the same mutation, but only one may be affected by the disease. Because each set of iPSCs is specific to the individual from whom they are derived, researchers can compare the sets to identify molecular differences, such as a modifier gene active in one person but not the other.

Furthermore, the cells offer a renewable, long-lasting model system for testing drug candidates or gene modifications that may offer new treatments, personalized to individual patients.

The second study in Blood provides a concrete example of using iPSCs for drug testing, specifically for the often-aggressive childhood leukemia, JMML. First the study team generated iPSCs from two children with JMML, and then manipulated the iPSCs in cell cultures to produce myeloid cells that multiplied uncontrollably, much as the original JMML cells do.

They then tested the cells with two drugs, each able to inhibit a separate protein known to be highly active in JMML. One drug, an inhibitor of the MEK kinase, reduced the proliferation of cancerous cells in culture. "This provides a rationale for a potential targeted therapy for this specific subtype of JMML," said Weiss.

A stem cell core facility at CHOP, directed by study co-author Deborah French under the auspices of the hospital's Center for Cellular and Molecular Therapeutics, generated the iPSCs lines used in these studies. The facility's goal is to develop and maintain standardized iPSCs lines specific to a variety of rare inherited diseases—not only DBA and JMML, but also dyskeratosis congenita, congenital dyserythropoietic anemia, thrombocytopenia absent radii (TAR), Glanzmann's thrombasthenia and Hermansky- Pudlak syndrome.

A longer-term goal, added Weiss, is for the iPSC lines to provide the raw materials for eventual cell therapies that could be applied to specific genetic disorders. "The more we learn about the molecular details of how these diseases develop, the closer we get to designing precisely targeted tools to benefit patients."

The National Institutes of Health (grants HL101606, DK090969) supported both studies. Also supporting the Diamond Blackfan anemia study were the U.S. Department of Defense (grant BM090168), and N.I.H. grants CA106995, CA105312, RR024134, and TR000003. Other funders of the JMML study were N.I.H. grants HL099656 and CA082103, the Cookies for Kids' Cancer Foundation, the Leukemia and Lymphoma Society and the Frank A. Campini Foundation. Weiss's research on stem cells is also supported by the Jane Fishman Grinberg Endowed Chair and Bessler receives support from the Buck Family Endowed Chair in Hematology.

"Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients," Blood, published online June 6, 2013. http://doi.org/10.1182/blood-2013-01-478321

"Patient-derived induced pluripotent stem cells recapitulate hematopoietic abnormalities of juvenile myelomonocytic leukemia," Blood, published online April 25, 2013. http://doi.org/10.1182/blood-2013-01-478412

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program receives the highest amount of National Institutes of Health funding among all U.S. children's hospitals. In addition, its unique family-centered care and public service programs have brought the 527-bed hospital recognition as a leading advocate for children and adolescents.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Life Sciences:

nachricht All-in-one: New microbe degrades oil to gas
20.08.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht New artificial compound eye could improve 3D object tracking
20.08.2019 | The Optical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

All-in-one: New microbe degrades oil to gas

20.08.2019 | Life Sciences

Spinning lightwaves on a one-way street

20.08.2019 | Physics and Astronomy

Materials that can revolutionize how light is harnessed for solar energy

20.08.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>