Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using carbon nanotubes to seek and destroy anthrax toxin and other harmful proteins

12.12.2007
New technology could enable new cancer treatment techniques and antibacterial coatings

Researchers at Rensselaer Polytechnic Institute have developed a new way to seek out specific proteins, including dangerous proteins such as anthrax toxin, and render them harmless using nothing but light. The technique lends itself to the creation of new antibacterial and antimicrobial films to help curb the spread of germs, and also holds promise for new methods of seeking out and killing tumors in the human body.

Scientists have long been interested in wrapping proteins around carbon nanotubes, and the process is used for various applications in imaging, biosensing, and cellular delivery. But this new study at Rensselaer is the first to remotely control the activity of these conjugated nanotubes. Details of the project are outlined in the article “Nanotube-Assisted Protein Deactivation” in the December issue of Nature Nanotechnology.

A team of Rensselaer researchers led by Ravi S. Kane, professor of chemical and biological engineering, has worked for nearly a year to develop a means to remotely deactivate protein-wrapped carbon nanotubes by exposing them to invisible and near-infrared light. The group demonstrated this method by successfully deactivating anthrax toxin and other proteins.

“By attaching peptides to carbon nanotubes, we gave them the ability to selectively recognize a protein of interest – in this case anthrax toxin – from a mixture of different proteins,” Kane said. “Then, by exposing the mixture to light, we could selectively deactivate this protein without disturbing the other proteins in the mixture.”

By conjugating carbon nanotubes with different peptides, this process can be easily tailored to work on other harmful proteins, Kane said. Also, employing different wavelengths of light that can pass harmlessly through the human body, the remote control process will also be able to target and deactivate specific proteins or toxins in the human body. Shining light on the conjugated carbon nanotubes creates free radicals, called reactive oxygen species. It was the presence of radicals, Kane said, that deactivated the proteins.

Kane’s new method for selective nanotube-assisted protein deactivation could be used in defense, homeland security, and laboratory settings to destroy harmful toxins and pathogens. The method could also offer a new method for the targeted destruction of tumor cells. By conjugating carbon nanotubes with peptides engineered to seek out specific cancer cells, and then releasing those nanotubes into a patient, doctors may be able to use this remote protein deactivation technology as a powerful tool to prevent the spread of cancer.

Kane’s team also developed a thin, clear film made of carbon nanotubes that employs this technology. This self-cleaning film may be fashioned into a coating that – at the flip of a light switch – could help prevent the spread of harmful bacteria, toxins, and microbes.

“The ability of these coatings to generate reactive oxygen species upon exposure to light might allow these coatings to kill any bacteria that have attached to them,” Kane said. “You could use these transparent coatings on countertops, doorknobs, in hospitals or airplanes – essentially any surface, inside or outside, that might be exposed to harmful contaminants.”

Kane said he and his team will continue to hone this new technology and further explore its potential applications.

Michael Mullaney | EurekAlert!
Further information:
http://www.rpi.edu

Further reports about: Anthrax Carbon Nanotubes Technology Toxin carbon nanotubes

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>