Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research scientists discover chemical triggers for aggression in mice

10.12.2007
Work could help unravel general neurological basis for behaviors

The work, reported in an advance, online issue of the journal Nature on December 6, 2007, furthers the broad and important goal of elucidating how the neurological system can detect and respond to specific cues in of a sea of potential triggers.

“These results are a really exciting starting place for us to understand how pheromones and the brain can shape behavior,” says team leader Lisa Stowers of the Scripps Research Department of Cell Biology.

Pheromones are chemical cues that are released into the air, secreted from glands, or excreted in urine and picked up by animals of the same species, initiating various social and reproductive behaviors.

“Although the pheromones identified in this research are not produced by humans, the regions of the brain that are tied to behavior are the same for mice and people,” says James F. Battey, Jr., director of the National Institute on Deafness and Other Communication Disorders (NIDCD) of the National Institutes of Health, which provided funding for the study. “Consequently, this research may one day contribute to our understanding of the neural pathways that play a role in human behavior. Much is known about how pheromones work in the insect world, but we know very little about how these chemicals can influence behavior in mammals and other vertebrates.”

The Complex Puzzle of Brain Function

Identifying the chemical pathway of signals that make their way through the neurological system is not easy. One of the challenges for scientists studying brain circuits is that the brain is constantly changing. How a brain detects and then responds to the scent of a particular food, for instance, evolves as the animal learns about that food.

But certain behaviors such as aggression responses between male mice tend to be the same each time they are triggered, suggesting a steady pathway through neurological circuits. So, the Stowers group has focused a research program on understanding the aggression pathway as a general model for brain response.

As a first step in the current study, the group sought to identify specific chemical triggers for aggression in mice, which other researchers had shown involved urine. The Stowers group separated out several classes of chemicals within the urine, then individually swabbed each class onto the backs of castrated mice to determine which could spark an aggressive response by another male. Castrated males lose the ability to elicit aggression on their own, so any such response could be attributed to the added chemicals.

Using this experimental setup, the researchers were able to show specific compounds triggered aggression. Upon examination, the scientists found that these compounds fell into two distinct chemical groups-low molecular weight and high molecular weight proteins.

Particularly intriguing were the high molecular weight compounds, as few high molecular weight compounds exist in urine and none had ever before been shown to act as pheromones. The Stowers group focused on these for the remainder of the study.

Tracing Phermones’ Path

Next, the Stowers lab sought to discover the effect of these high molecular weight compounds on two neurological organs that could potentially convey the pheromone signals to the brain. The first, called the vomeronasal organ (VNO), is located above the roof of the mouth in the nasal cavity. The second is the main olfactory epithelium (MOE), found under the eyeball at the top back portion of the nasal cavity.

Which of these two organs is the main starting point for the aggression pathway is somewhat controversial. Stowers' group had shown in past work that mice genetically altered to lack the VNO did not have aggression responses, suggesting this organ plays a key role, but other researchers had made similar findings with knockout mice lacking the MOE.

To further explore this aspect of signal processing, the Stowers team used an assay of their own design that allows the isolation of individual VNO neurons and MOE neurons and measurement of their firing in response to a given chemical cue. The researchers found that, when exposed to high molecular weight compounds, VNO neurons fired indicating that these are the sensory neurons that mediate aggressive behavior. Moreover, the group was able to provide details about both specific neurons and compounds, and further, identify the subset of VNO neurons that fired in response to four specific high molecular weight proteins acting together.

Stowers adds that while the work elucidates the VNO vs. MOE debate, the current study does not settle it, because the yet-to-be-tested low molecular weight compound class could function via the MOE instead of the VNO. This could make sense because the smaller compounds are more easily volatilized, making it easier for them to reach the MOE, which resides much farther back in the nasal cavity than the VNO.

Interestingly, the four high molecular weight pheromone compounds isolated are from a much larger class of proteins, but an individual mouse only produces four, and the combinations produced differs among individuals. In the past, this four-protein signature was thought to be random, but Stowers says it is possible that different combinations of the proteins could code for different responses.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: Aggression Chemical MOE Pheromone Stowers VNO neurological neurons triggers urine

More articles from Life Sciences:

nachricht Tracing the evolution of vision
23.08.2019 | University of Göttingen

nachricht Caffeine does not influence stingless bees
23.08.2019 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>