Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research scientists discover chemical triggers for aggression in mice

10.12.2007
Work could help unravel general neurological basis for behaviors

The work, reported in an advance, online issue of the journal Nature on December 6, 2007, furthers the broad and important goal of elucidating how the neurological system can detect and respond to specific cues in of a sea of potential triggers.

“These results are a really exciting starting place for us to understand how pheromones and the brain can shape behavior,” says team leader Lisa Stowers of the Scripps Research Department of Cell Biology.

Pheromones are chemical cues that are released into the air, secreted from glands, or excreted in urine and picked up by animals of the same species, initiating various social and reproductive behaviors.

“Although the pheromones identified in this research are not produced by humans, the regions of the brain that are tied to behavior are the same for mice and people,” says James F. Battey, Jr., director of the National Institute on Deafness and Other Communication Disorders (NIDCD) of the National Institutes of Health, which provided funding for the study. “Consequently, this research may one day contribute to our understanding of the neural pathways that play a role in human behavior. Much is known about how pheromones work in the insect world, but we know very little about how these chemicals can influence behavior in mammals and other vertebrates.”

The Complex Puzzle of Brain Function

Identifying the chemical pathway of signals that make their way through the neurological system is not easy. One of the challenges for scientists studying brain circuits is that the brain is constantly changing. How a brain detects and then responds to the scent of a particular food, for instance, evolves as the animal learns about that food.

But certain behaviors such as aggression responses between male mice tend to be the same each time they are triggered, suggesting a steady pathway through neurological circuits. So, the Stowers group has focused a research program on understanding the aggression pathway as a general model for brain response.

As a first step in the current study, the group sought to identify specific chemical triggers for aggression in mice, which other researchers had shown involved urine. The Stowers group separated out several classes of chemicals within the urine, then individually swabbed each class onto the backs of castrated mice to determine which could spark an aggressive response by another male. Castrated males lose the ability to elicit aggression on their own, so any such response could be attributed to the added chemicals.

Using this experimental setup, the researchers were able to show specific compounds triggered aggression. Upon examination, the scientists found that these compounds fell into two distinct chemical groups-low molecular weight and high molecular weight proteins.

Particularly intriguing were the high molecular weight compounds, as few high molecular weight compounds exist in urine and none had ever before been shown to act as pheromones. The Stowers group focused on these for the remainder of the study.

Tracing Phermones’ Path

Next, the Stowers lab sought to discover the effect of these high molecular weight compounds on two neurological organs that could potentially convey the pheromone signals to the brain. The first, called the vomeronasal organ (VNO), is located above the roof of the mouth in the nasal cavity. The second is the main olfactory epithelium (MOE), found under the eyeball at the top back portion of the nasal cavity.

Which of these two organs is the main starting point for the aggression pathway is somewhat controversial. Stowers' group had shown in past work that mice genetically altered to lack the VNO did not have aggression responses, suggesting this organ plays a key role, but other researchers had made similar findings with knockout mice lacking the MOE.

To further explore this aspect of signal processing, the Stowers team used an assay of their own design that allows the isolation of individual VNO neurons and MOE neurons and measurement of their firing in response to a given chemical cue. The researchers found that, when exposed to high molecular weight compounds, VNO neurons fired indicating that these are the sensory neurons that mediate aggressive behavior. Moreover, the group was able to provide details about both specific neurons and compounds, and further, identify the subset of VNO neurons that fired in response to four specific high molecular weight proteins acting together.

Stowers adds that while the work elucidates the VNO vs. MOE debate, the current study does not settle it, because the yet-to-be-tested low molecular weight compound class could function via the MOE instead of the VNO. This could make sense because the smaller compounds are more easily volatilized, making it easier for them to reach the MOE, which resides much farther back in the nasal cavity than the VNO.

Interestingly, the four high molecular weight pheromone compounds isolated are from a much larger class of proteins, but an individual mouse only produces four, and the combinations produced differs among individuals. In the past, this four-protein signature was thought to be random, but Stowers says it is possible that different combinations of the proteins could code for different responses.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: Aggression Chemical MOE Pheromone Stowers VNO neurological neurons triggers urine

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>