Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thiocoraline-A Binds The DNA Of Tumor Cells

05.12.2007
Scientists from the Universidad de Alcalá (UAH) explain the molecular bases of DNA sequence identification by the marine antitumoral antibiotic thiocoraline A.

Researchers from the Universidad de Alcalá (UAH) managed by Professor Federico Gago from the pharmacology department, have published an article in the Journal of Medicinal Chemistry clarifying the molecular bases of DNA sequence identification by Thiocoraline A, a marine antibiotic compound with antitumoral action.

This molecule is a product of the biopharmaceutical company PharmaMar (http://www.pharmamar.com/es/pipeline/) and has a potent cytotoxic effect over a wide range of tumour cells both animal and human. The 3D structure of thiocoraline, determined by X-ray crystallography at the Universidad de Santiago de Compostela, shows a characteristic staple shaped pattern that explains its bisintercalative property in the DNA double helix (fig) as well as the particular arrangement of the pairs, piling up in columns inside the crystal structure.

Thanks to this double intercalation, thiocoraline is able to identify specific sequences of DNA and attaches to them, making it harder for the strands of DNA that form the double helix to separate.

... more about:
»DNA »Marine »UAH »antibiotic »sequence »thiocoraline

In order to evaluate this effect, Professor Alberto Domingo from the biochemistry and molecular biology department of the UAH used tiny quantities of DNA linked to a fluorescent marker and standard instruments for reverse transcription polymerase chain reaction (RT-PCR). The information produced by this miniaturised method, that has proven to be a far superior technique to the those used in the past for this kind of experimentation, shows the binding affinity of thiocoraline for DNA in great detail, and has later been computer modelled for better understanding. In this way, it has been possible to verify that the flat rings of this molecule intertwine with the two closest base pairs while leaving another two pairs in between free in accordance with the exclusion principle; the rest of the molecule establishes hydrogen bonds with the central base pairs.

The resulting complex resembles a sandwich in which the bread is represented by the rings of the agent and the filling is the base pairs trapped by the thiocoraline (fig). It’s mainly these hydrogen bonds that grant the antibiotic the ability to bind selectively and this area is currently still under investigation at PharmaMar, a company of the Zeltia group that was recently granted approval by the Spanish health authorities for a new product of marine origin - the trabectedin (Yondelis) - aimed to treat sarcoma in soft tissues.

Authors: Federico Gago y Ana Negri

Oficina de Información Científic | alfa
Further information:
http://www.uah.es
http://pubs3.acs.org/acs/journals/toc.page?incoden=jmcmar&indecade=0&involume=50&inissue=14

Further reports about: DNA Marine UAH antibiotic sequence thiocoraline

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>