Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Protein That Detects Damaged DNA

14.05.2002


Physicians have long marveled at the body’s ability to heal itself. Over time, breaks, tears, burns and bruises can often disappear sans medical intervention. Less well-understood are the similarly extraordinary repairs that take place on the molecular level, in DNA. To that end, findings announced today in the Proceedings of the National Academy of Sciences, may prove insightful. According to the report, researchers have found that a protein known as ATR appears to sense damage to DNA and touch off a sequence of events leading to molecular mending.



Ultraviolet radiation, chemotherapy and other agents can cause lesions in cellular DNA that must be fixed before the cell divides and replicates the mutations, which can lead to cancer, among other problems. Previous work had implicated ATR in the repair of damaged DNA, but exactly which part of that cascade of events the protein is responsible for remained a mystery. The new research, conducted by Aziz Sancar and his colleagues at the University of North Carolina, suggests that ATR directly detects DNA lesions and sounds the alarm bell, summoning the other members of the repair crew to duty, so to speak. "To find out if ATR directly sensed damaged DNA, we put a molecular tag on the ATR protein and purified it," Sancar explains. "We incubated the tagged protein with either bits of DNA that were normal or damaged by UV radiation. ATR bound more often to damaged DNA than to undamaged DNA." Furthermore, he notes, ATR’s activity increased when it encountered problematic DNA.

The results imply that ATR functions as an initial sensor in what is known as the DNA damage checkpoint response. "This is a very important phenomenon in both normal and cancerous cells," Sancar observes. "ATR appears to act as a switch that starts the repair process and also stops cells from proliferating while they are being repaired." Although the new work "is not going to cure cancer by itself," he remarks, "it is a significant step forward" in that it could point the way to new anticancer drugs.

Kate Wong | Scientific American

More articles from Life Sciences:

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

nachricht Scientists unveil completely human platform for testing age-specific vaccine responses
20.11.2018 | Boston Children's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

Researchers use MRI to predict Alzheimer's disease

20.11.2018 | Medical Engineering

How to melt gold at room temperature

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>