Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small RNA plays parallel roles in bacterial metabolism

30.11.2007
They are often overlooked, and were once thought to be too small to contribute much to major cellular processes, but in recent years the study of small ribonucleic acids (sRNA) has gained momentum. Now a team from the University of Illinois has identified the unique metabolic activities of one of these bit players, a 200-nucleotide-long RNA molecule in bacteria called SgrS.

This molecule is one of about 80 known small RNAs common to many bacteria. It got its name for its role in sugar metabolism (SgrS is an acronym for sugar-related stress). When a bacterium such as Escherichia coli has taken up enough – or too much – glucose from its surroundings, SgrS helps stop the transport of glucose molecules across the cell membrane, said microbiology professor and principal investigator Carin Vanderpool.

In trying to tease out how SgrS performs this task, Vanderpool and technician Caryn Wadler discovered that the molecule performs dual roles, both of which inhibit the transport of glucose into the cell. One region of the RNA molecule binds to a messenger RNA to inhibit the production of new glucose transporters, while another region codes for a protein that seems to retard the activity of existing transporters.

The findings appear online this month in the Proceedings of the National Academy of Sciences.

... more about:
»Glucose »RNA »SgrS »Vanderpool »bacterial

“The most novel thing about this discovery is that this molecule seems to be truly bi-functional in that the two functions it performs participate in the same stress response,” Vanderpool said.

One other small RNA, a 500-nucleotide molecule that regulates virulence genes in Staphylococcus aureus bacteria, was previously found to encode a protein, Vanderpool said, but the activity of that protein did not participate in the regulation.

The two regions of the molecule were apparently engaged in unrelated tasks.

Some glucose is obviously good, since the bacteria use it to make essential cell molecules and to provide energy. However, excess glucose in bacterial cells interferes with vital functions, Vanderpool said, so the SgrS response is essential to bacterial survival. A deeper understanding of how bacteria defend themselves from metabolic stresses such as excess glucose could lead to important therapeutic innovations, she said.

Vanderpool hopes that more researchers will explore the multifunctional potential of these diminutive molecules.

“Don’t overlook them just because they’re short,” she said.
To view or subscribe to the RSS feed for Science News at Illinois, please go to: http://webtools.uiuc.edu/rssManager/608/rss.xml.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: Glucose RNA SgrS Vanderpool bacterial

More articles from Life Sciences:

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Record levels of mercury released by thawing permafrost in Canadian Arctic
13.12.2018 | University of Alberta

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>