A Molecular Map for Aging in Mice

The study, published November 30 in PLoS Genetics, uses a newly available database called AGEMAP to document the process of aging in mice at the molecular level. The work describes how aging affects different tissues in mice, and ultimately could help explain why lifespan is limited to just two years in mice.

As an organism ages, most tissues change their structure (for example, muscle tissues become weaker and have slow twitch rather than fast twitch fibers), and all tissues are subject to cellular damage that accumulates with age. Both changes in tissues and cellular damage lead to changes in gene expression, and thus probing which genes change expression in old age can lead to insights about the process of aging itself.

Previous studies have studied gene expression changes during aging in just one tissue. The new work stands out because it is much larger and more complete, including aging data for 16 different tissues and containing over 5.5 million expression measurements.

One noteworthy result is that some tissues (such as the thymus, eyes and lung) show large changes in which genes are active in old age whereas other tissues (such as liver and cerebrum) show little or none, suggesting that different tissues may degenerate to different degrees in old mice.

Another insight is that there are three distinct patterns of aging, and that tissues can be grouped according to which aging pathway they take. This result indicates that there are three different clocks for aging that may or may not change synchronously, and that an old animal may be a mixture of tissues affected by each of the different aging clocks.

Finally, the report compares aging in mice to aging in humans. Several aging pathways were found to be the same, and these could be interesting because they are relevant to human aging and can also be scientifically studied in mice.

PLEASE ADD THIS LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://genetics.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pgen.0030201

CITATION: Zahn JM, Poosala S, Owen AB, Ingram DK, Lustig A, et al. (2007) AGEMAP: A gene expression database for aging in mice. PLoS Genet 3(11): e201. doi:10.1371/journal.pgen.0030201

PRESS-ONLY PDF: http://www.plos.org/press/plge-03-11-24-Kim.pdf

Media Contact

Andrew Hyde alfa

More Information:

http://genetics.plos.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors