Scientists unravel plants' natural defenses

Photosynthesis in plants relies upon the efficient collection of sunlight. This process can work even at low levels of sunlight, when plants are in the shade or under cloud cover for example. However, when the sun is very bright or when it is cold or very dry, the level of light energy absorbed by leaves can be greatly in excess of that which can be used in photosynthesis and can destroy the plant. However, plants employ a remarkable process called photoprotection, in which a change takes place in the leaves so that the excess light energy is converted into heat, which is harmlessly dispersed.

Until now, researchers hadn’t known exactly how photoprotection works. By joining forces with their physicist colleagues in France and the Netherlands, the UK team have determined how this process works. They were able to show how a small number of certain key molecules, hidden among the millions of others in the plant leaf, change their shape when the amount of light absorbed is excessive; and they have been able to track the conversion of light energy to heat that occurs in less than a billionth of a second.

Many plant species can successfully inhabit extreme environments where there is little water, strong sunlight, low fertility and extremes of temperature by having highly tuned defence mechanisms, including photoprotection. However, these mechanisms are frequently poorly developed in crop plants since they are adapted for high growth and productivity in an environment manipulated by irrigation, fertilisation, enclosure in greenhouses and artificial shading. These manipulations are not sustainable, they have high energy costs and may not be adaptable to an increasingly unstable climate. Researchers believe that in the future, the production of both food and biofuel from plants needs to rely more on their natural defence mechanisms, including photoprotection.

Professor Horton, of the University of Sheffield’s Department of Molecular Biology and Biotechnology, who lead the UK team, said: “These results are important in developing plants with improved photoprotective mechanisms to enable them to better cope with climate change. This may be hugely significant in our fight against global warming. It is a fantastic example of what can be achieved in science when the skills of biologists and physicists are brought together.”

Moreover, there are other global implications of this research. Dr Alexander Ruban of Queen Mary's School of Biological and Chemical Sciences, comments: “As we seek to develop new solar energy technology it will be important to not only understand, but to mimic the way biology has learnt to optimise light collection in the face of the continually changing intensity of sunlight.”

Media Contact

Lindsey Bird EurekAlert!

More Information:

http://www.sheffield.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors